Объяснение:
если известно, что искомая прямая y₁ = k₁x +b₁ параллельна прямой y=-4x+51 (у=кх +b), то мы знаем коэффициент k₁ = -4 при x, т.к. у параллельных прямых коэффициенты k и к₁ при х равны.
тогда мы уже имеем "половину" уравнения у₁ = -4х +b₁
теперь для определения b₁ используем то, что искомая прямая проходит через точку M(-1; 3). это означает, что координаты точки должны удовлетворять уравнению у₁ = -4х +b₁. подставим эти координаты
3= -4*(-1) +b₁ тогда b₁ = -1
и искомое уравнение
у₁ = -4х -1
теперь проверим, принадлежит ли построенному графику точка N(-50; 200). подставим ее координаты в уравнение у₁ = -4х -1
200 ≠ -4*(-50)-1
точка N(-50; 200) ∉ графику функции у₁ = -4х -1
тогда строим график по двум точкам
х = -1 у₁(-1) = 3 точка M(-1; 3)
х = 0 у₁(0) = -1
на первом фото построение по двум точкам у₁ = -4х -1 ║y=-4x+51
на втором показано, что точка N(-50; 200). ∉ графику у₁ = -4х -1
Дробь равна 0 когда числитель равен 0, а знаменатель отличен от нуля.
{tg²x - 3atgx + (7 - a) = 0
{3tgx + 1 ≠ 0 ⇒ tgx ≠ -1/3
Замена переменной:
tgx=t
t²-3at+(7-a)=0
D=(-3a)²-4·(7-a)=9a²+4a-28
Если дискриминант квадратного уравнения равен 0, то уравнение имеет один корень.
9a²+4a -28=0
D₁=16-4·9·(-28)=4·256=(2·16)²=32²
a=(-4-32)/18=-2 или a=(-4+32)/18=14/9
При а=-2 или при а=14/9 уравнение имеет один корень.
Найдем его
t²-3at+(7-a)=0
при a=-2:
t²+6t+9=0
t= - 3 ( корень отличен от (-1/3))
а=14/9
t²-(14/3)t +(49/9)=0
t²-2t·(7/3)+(7/3)²=0
t=7/3 ( корень отличен от (-1/3))
При D > 0 уравнение имеет два корня:
a∈(-∞;-2)U(14/9; +∞)
О т в е т.
один или два корня при
a∈(-∞;-2]U[14/9; +∞)