Скорость первого катера:
V
1
Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
функция ни чётная ,ни нечётная
Скорость первого катера:
v₁ = 60/t
Скорость второго катера:
v₂ = 60/(t+1)
Скорость сближения катеров:
v = v₁+v₂ = 60/t + 60/(t+1) =
= 60(t+1)+60t)/(t(t+1)) = (120t+60)/(t²+t)
По условию: v = S/t' = 50:1 = 50 (км/ч)
Тогда:
120t + 60 = 50t² + 50t
50t² - 70t - 60 = 0
5t² - 7t - 6 = 0 D = b²-4ac = 49+120 = 169
t₁ = (-b+√D)/2a = 2 (ч)
t₂ = (-b-√D)/2a = -0,6 (ч) - не удовлетворяет условию
Тогда скорость первого катера:
v₁ = 60/t = 60:2 = 30 (км/ч)
Скорость второго катера:
v₂ = 60/(t+1) = 60:3 = 20 (км/ч)
ответ: 30 км/ч; 20 км/ч.
Объяснение: