Объяснение:
1) (a-5)(a+3) < (a+1)(a-7)
a^2-5a+3a-15 < a^2+a-7a-7
-2a-15 < - 6a-7
4a < 8
a < 2
Это неравенство верно вовсе не при любых а, а только при а меньше 2.
2) [5x+2] <= 3
Видимо, квадратные скобки это модуль. Неравенство распадается на два:
а) 5x+2 >= - 3
5x >= - 5
x >= - 1
б) 5x+2 <= 3
5x <= 1
x <= 1/5
Целые решения: - 1; 0
3) Пусть одна сторона равна 5 см, а другая больше неё в 4 раза, то есть 20 см.
Тогда периметр равен 2*(5+20) = 2*25 = 50 см.
Если первая сторона меньше 5 см, то вторая меньше 20 см, а периметр меньше 50 см.
Для нахождения площади фигуры, ограниченной линиями функций у = х^2, у = 0 и х = 2 построим сначала графики этих функций. График функции у = 0 - прямая, которая задаёт ось ОХ; график функции х = 2 - прямая, параллельная оси ОУ и пересекающая ось ОХ в точке х =2. График функции у = х^2 - парабола, построена поточечно путём подбора значений координаты х и вычислением значения функции у в каждой такой точке. То есть:
1) х = -4, у = (-4)^2 = 16, на графике откладываем точки х = -4 и у = 16;
2) х = -3, у = (-3)^2 = 9, на графике откладываем точки х = -3 и у = 9;
3)х = -2, у = (-2)^2 = 4, на графике откладываем точки х = -2 и у = 4;
4)х = -1, у = (-1)^2 = 1, на графике откладываем точки х = -1 и у = 1;
5)х = 0, у = 0, на графике откладываем точки х = 0 и у = 0;
6)х = 4, у = 4^2 = 16, на графике откладываем точки х = 4 и у = 16;
7) х = 3, у = 3^2 = 9, на графике откладываем точки х = 3 и у = 9;
8)х = 2, у = 2^2 = 4, на графике откладываем точки х = 2 и у = 4;
9)х = 1, у = 1^2 = 1, на графике откладываем точки х = 1 и у = 0.
Заштрихованная на графике область является фигурой, площадь которой необходимо вычислить (площадь криволинейной трапеции). Вычисляется она по формуле определенного интеграла S = ∫f(x) dx - g(x) dx (верхний предел b, нижний предел a). Найдём верхний и нижний пределы интеграла. Для этого воспользуемся построенным графиком. Определим, на каком промежутке функция у = х^2 находится выше оси ОХ (так как значение площади не может быть числом отрицательным). Это отрезок [0;2], значит верхним пределом интеграла будет два (b = 2), нижним ноль (а = 0).
Вычислим определенный интеграл функции у = х^2 с пределами 2 и 0, значение которого и будет равно значению площади:
S = ∫(х^2)dx (верхний предел 2, нижний 0).
Интегрируем с формулы интегрирования:
∫х^ n dx = x^(n+1) / n+1,
и получаем выражение х^3/3.
Далее воспользуемся формулой Ньютона - Лейбница и получим значение площади, равное 8/3 или ~ 2,67 кв.ед.
ответ: площадь фигуры, ограниченной линиями у = х^2, х = 2, у= 0 равна 8/3 или ~ 2,67 кв.единиц.
Подробнее - на -