Нужно заучить таблицу квадратов, хотя бы до 20^2 = 400, и извлекать корни.
1) √(16*25) = √16*√25 = 4*5 =. 20
2) √216 = √(36*6) = 6√6
3) 2√14 = √(2^2*14) = √(4*14) = √56
4) 6+ 4√2 = 4+ 4√2+ 2. = 2^2+ 2*2*√2+ (√2)^2 = (2+ √2)^2
5) 26 -15√3 = 8 +18 - 12√3 -3√3 = 2^3 - 3*2^2*√3 + 3*2*(√3)^2 - (√3)^3 = (2-√3)^3
6) (√2-1)*√(3-2√2) + 2√2 = (√2-1)*√(2-2√2+1) + 2√2 = (√2-1)*√(√2-1)^2 + 2√2 =
= (√2-1)(√2-1) + 2√2 = 2-2√2+1+2√2 = 3
7) 12/(3√2) = 6/√2 = 6*√2/(√2)^2 = 6√2/2 = 3√2
8) 4/(3-√15) + 4/(3+√15) = 4(3+√15)/(9-15) + 4(3-√15)/(9-15)=
= (12+4√15+12-4√15)/(-6) = 24/(-6) = -4
сos(4arctgx)=1/2
4arctgx=±arccos(1/2)+2πn, n∈Z;
4arctgx=±π/3+2πn, n∈Z;
arctgx=±π/12+πn/2, n∈Z;
x=tg(±π/12+πn/2), n∈Z;
cos((±π/12+πn/2))≠0
Поскольку арктангенс - это угол из (-π/2;π/2), при n =0 получим два ответа х=tg(±π/12).
tg(π/12)=(tg(π/4-π/6))=(1 -√3/3)/ (1+√3/3)=
(3-√3)/(3+√3) = (3-√3)²/(3²-(√3)² ) =(12-2√3)/(9-3)=2-√3/3
tg(-π/12)=-tg(π/12)=-(2-√3/3)=-2+√3/3
При n=1 х=tg(±π/12+π/2), указанному промежутку удовлетворяет tg(5π/12)=(tg(π/4+π/6))=(1 +√3/3)/ (1-√3/3)=
(3+√3)/(3-√3) = (3+√3)²/(3²-(√3)² ) =(12+2√3)/(9-3)=2+√3/3
При n=-1 х=tg(±π/12-π/2), указанному промежутку удовлетворяет tg(-5π/12)=-tg5π/12=-(2+√3/3 )=-2-√3/3
При n=2 х=tg(±π/12+π); и при n=-2 х=tg(±π/12-π), Корней нет. Остальные можно не проверять, они не войдут в промежуток
(-π/2;π/2).
ответ. х=±(2-√3/3); х=±(2+√3/3 )