54мин=54/60ч=9/10ч=0,9ч х-время быстрой группы на весь путь х+0,9-время медленной группы на весь путь 18/2=9км/ч- совместная скорость 18/х+18/(х+0,9)=9 18(х+0,9)+18х=9х(х+0,9) 18х+16,2+18х=9х²+8,1х 36х+16,2=9х²+8,1х 9х²+8,1х-36х-16,2=0 9х²-27,9х-16,2=0 разделим на 9 х²-3,1х-1,8=0 d = (-3.1)2 - 4·1·(-1.8) = 9.61 + 7.2 = 16.81х₁=( 3.1 - √16.81)/(2*1) = (3.1 - 4.1)/2 = -1/2 = -0.5- не подходитх₂=(3.1 +√16.81)/(2*1) = (3.1 + 4.1)/2 =7,2/2 = 3,6 18/3,6=180/36=20/4=5км/ч-скорость быстрой группы 9-5=4км/ч- скорость медленной группы
Функция у = х² + 4х - 12
График функции - квадратная парабола веточками вверх
Найдём характерные точки этой параболы.
1) Точка пересечения с осью Оу: х = 0; у = -12;
2) точки пересечения с осью Ох: у = 0
х² + 4х - 12 = 0
D = 4² - 4 · (-12) = 64
√D = 8
x₁ = (-4 - 8)/2 = -6
x₂ = (-4 + 8) = 2
Получили две точки (-6; 0) и (2; 0)
3) найдём координаты вершины С параболы С(m; n)
m = - b/2a = -4/2 = -2
n = y(-2) = (-2)² + 4 · (-2) - 12 = -16
C(-2; -16)
По найденным точкам строим параболу (смотри прикреплённый рисунок).
По графику находим
а) у > 0 при х ∈ (-∞; -6)∪(2; +∞); y < 0 при х ∈ (-6; 2)
б) у↑ при х ∈ (-2; +∞); у↓ при х ∈ (-∞; -2)
в) у наим = у(-2) = -16; наибольшего значения не существует.