М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Алексей123412
Алексей123412
27.05.2021 05:28 •  Алгебра

Упростить выражение: (2а - 12а - 1) + (а - 7)(a + 7) (1 - а - а) ( 1а)(1 + а)- 2а(а - 1) (5 + с)(с - 5) - (с - 10)(c + 10) (х-3)(х + 3) - (х + 8)(х - 8) (- 2a - Sc)(2a - Sc) 65x - (2x + 0,8)(2x - 0,8) (у - 3)(у 4 9)(у + 49 3) - (2y-y) - 19


Упростить выражение: (2а - 12а - 1) + (а - 7)(a + 7) (1 - а - а) ( 1а)(1 + а)- 2а(а - 1) (5 + с)(с -

👇
Открыть все ответы
Ответ:
980sveta
980sveta
27.05.2021

2)\frac{x^{2}-4x-12}{x-2}

   -          +            -            +

____₀______₀_____₀____

      - 2            2          6

/////////              ////////////

ответ : x ∈ (- ∞ ; - 2) ∪ (2 ; 6)

2)\frac{x^{2}}{x^{2}+3x}+\frac{2-x}{x+3}

   +        -           +       -          +

____₀_____₀____₀____₀____

     - √15      - 3      0       √15

        ////////////         ///////////

ответ : x ∈ (- √15 ; - 3) ∪ ( 0 ; √15)

3)\frac{x^{2}+7x+10}{x^{2}-4} 0\\\\\frac{(x+2)(x+5)}{(x+2)(x-2)}0

   +       -            -           +

____₀_____₀_____₀____

      - 5         - 2         2

/////////                        //////////

ответ : x ∈ (- ∞ ; - 5) ∪ (2 ; + ∞)

4)\frac{x^{2}-8x+7 }{x-1}\leq0\\\\\frac{(x-1)(x-7)}{x-1}\leq0,x\neq1

     -            -               +

______(1)_____[7]_____

///////////    ////////////

ответ : x ∈ (- ∞ ; 1) ∪ (1 ; 7)

4,7(49 оценок)
Ответ:
Kember
Kember
27.05.2021

Степень с рациональным показателем Степень с рациональным показателем. Решение примеровЛекция: Степень с рациональным показателем и её свойстваСтепень с рациональным показателемСтепень с рациональным показателем - это та, в показателе которой находится конечная обыкновенная или десятичная дробь. Любую степень с рациональным показателем можно представить в виде корня, чья степень будет равна знаменателю дроби, находящейся в показателе степени, а числитель будет степенью подкоренного выражения.Свойства степени с рациональным показателемВсе, перечисленные ниже степени используются для рациональных чисел p, q и для положительных a, b.1. Если Вам необходимо умножить две степени с рациональными показателями, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.ap * aq = ap+q.Например:2. Если необходимо разделить две степени c рациональными показателями, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть.ap / aq = ap-q .Например,3. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.(ap )q = ap*qНапример,4. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.(a * b)p = ap * bp5. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.(a / b)p = ap / bq6. Если некоторая дробь имеет отрицательный рациональный показатель степени, то для избавления от знака минуса, её следует перевернуть.Например,Очень важно помнить, что знак степени не влияет на знак выражения при возведении в степень

4,6(98 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ