Решение: Обозначим длину прямоугольника за х, а ширину за у, тогда согласно условия задачи зная формулу площади прямоугольника: S=a*b,где а-длина, а в -ширина прямоугольника, составим систему уравнений: х-у=3 (х-2)*(у+4)-х*у=8 х-2- площадь прямоугольника до измения длины и ширины, а (х-2*)*(у+4) -площадь прямоугольника при изменения его длины и ширины Решим систему уравнений, из первого уравнения х=3+у Подставим во второе уравнение данное х (3+у-2)*(у+4)-(3+у)*у=8 (1+у)*(у+4)-3у-у^2=8 у+y^2+4+4y-3y-y^2=8 2y=8-4 2y=4 y=2, тогда х=3+2=5 Первоначальная площадь прямоугольника равна 5*2=10 ответ: 10см^2
ответ: 120*a^4*b^9*c^2
Решаем по действиям:1. 4*2.5=10 X2.5 _ _4_ 10 2. a*a^2=a^3 a*a^2=a^(1+2) 2.1. 1+2=3 +1 _2_ 33. (-10*a^3*b^3)*(-4*a*b^3)=-10*a^3*b^3*(-4*a*b^3)4. 10*a^3*b^3*(-4*a*b^3)=-10*a^3*b^3*4*a*b^35. 10*4=40 X10 _4_ _ 406. a^3*a=a^4 a^3*a=a^(3+1) 6.1. 3+1=4 +3 _1_ 47. b^3*b^3=b^6 b^3*b^3=b^(3+3) 7.1. 3+3=6 +3 _3_ 68. -(-40*a^4*b^6)=40*a^4*b^69. 40*3=120 X40 _3_ _ 12010. b^6*b^3=b^9 b^6*b^3=b^(6+3) 10.1. 6+3=9 +6 _3_ 9
Решаем по шагам:1. (-10*a*b^3*a^2)*(-4*a*b^3)*c^2*3*b^3 1.1. 4*2.5=10 X2.5 _ _4_ 10 2. (-10*a^3*b^3)*(-4*a*b^3)*c^2*3*b^3 2.1. a*a^2=a^3 a*a^2=a^(1+2) 2.1.1. 1+2=3 +1 _2_ 33. (-10*a^3*b^3*(-4*a*b^3))*c^2*3*b^3 3.1. (-10*a^3*b^3)*(-4*a*b^3)=-10*a^3*b^3*(-4*a*b^3)4. (-(-10*a^3*b^3*4*a*b^3))*c^2*3*b^3 4.1. 10*a^3*b^3*(-4*a*b^3)=-10*a^3*b^3*4*a*b^35. (-(-40*a^3*b^3*a*b^3))*c^2*3*b^3 5.1. 10*4=40 X10 _4_ _ 406. (-(-40*a^4*b^3*b^3))*c^2*3*b^3 6.1. a^3*a=a^4 a^3*a=a^(3+1) 6.1.1. 3+1=4 +3 _1_ 47. (-(-40*a^4*b^6))*c^2*3*b^3 7.1. b^3*b^3=b^6 b^3*b^3=b^(3+3) 7.1.1. 3+3=6 +3 _3_ 68. 40*a^4*b^6*c^2*3*b^3 8.1. -(-40*a^4*b^6)=40*a^4*b^69. 120*a^4*b^6*c^2*b^3 9.1. 40*3=120 X40 _3_ _ 12010. 120*a^4*b^9*c^2 10.1. b^6*b^3=b^9 b^6*b^3=b^(6+3) 10.1.1. 6+3=9 +6 _3_ 9