y = -6·x
Объяснение:
Пусть линейные функции, то есть прямые заданы уравнениями y₁=k₁·x+b₁ и y₂=k₂·x+b₂. Прямые параллельны тогда и только тогда, когда k₁=k₂ и b₁≠b₂. Если k₁=k₂ и b₁=b₂, то прямые совпадают.
В силу этого, уравнение прямой, параллельной графику функции y=-6·x+10 имеет вид: y=-6·x+b. Так как прямая проходит через начало координат О(0; 0), то подставляя эти значения определяем b:
0=-6·0+b или b=0.
Тогда уравнение прямой, параллельной графику функции y=-6x+10 и проходящей через начало координат имеет вид: y=-6·x.
пусть за хч-первая наполнит,а х+6 ч-наполнит вторая труба.
1/х-производительность первой трубы в 1час,а 1/(х+6) -производительность второй.
а 1/4 ч общая производительность за 1час.
Составим уравнение:
1/х+1/(х+6)=1/4 - приводим к общему знаменателю-4*х*(х+6)
4х+4х+24=х²+6х
х²-2х-24=0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-2)²-4*1*(-24)=4+96=√100=10;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(10+2)/2=12/2=6;
x₂=(-10+2)/2=-8/2=-4 - этот ответ не подходит,т.к. время не может быть отрицательное.
Значит
первая труба в отдельности может наполнить бассейн за 6ч,а вторая 6+6=за 12часов.