как найти точки пересечения графика функции с осями координат?
с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).
чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
примеры.
1) найти точки пересечения графика линейной функции y=kx+b с осями координат.
решение:
в точке пересечения графика функции с осью ox y=0:
kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
в точке пересечения с осью oy x=0:
y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).
y=2∙0-10=-10. с oy график пересекается в точке (0; -10).
2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.
решение:
в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.
в зависимости от дискриминанта, парабола пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.
в точке пересечения графика с осью oy x=0.
y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.
например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.
x²-9x+20=0
x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).
y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.
x²-2xy+y²-4y²=0
(x-y)² - (2y)² =0
(x-y-2y)(x-y+2y)=0
(x-3y)(x+y)=0
x-3y=0 x+y=0
x=3y x= -y
При x=3y:
(3y)²-3y*y-2*3y-3y=6
9y²-3y²-6y-3y=6
6y²-9y-6=0
2y²-3y-2=0
D=3²-4*2*(-2)=9+16=25
y₁=(3-5)/4=-0.5 x₁=3*(-0.5)=-1.5
y₂=(3+5)/4=2 x₂=3*2=6
При x=-y:
(-y)² - (-y)*y - 2*(-y) -3y=6
y²+y²+2y-3y-6=0
2y²-y-6=0
D=1-4*2*(-6)=1+48=49
y₁=(1-7)/4=-1.5 x₁=-(-1.5)=1.5
y₂=(1+7)/4=2 x₂=-2
ответ: (-2; 2); (-1.5; -0.5); (1.5; -1.5); (6; 2).