Если P(x) делится на Q(x), то
P(x)/Q(x)=A(x) ,где A(x)-многочлен.
Поскольку Q(x) делится на P(x),то
Q(x)/P(x)=B(x) ,где B(x) -многочлен.
Откуда верно, что:
A(x)*B(x)=1
Если знаете комплексный анализ, то очевидно, что многочлен со степенью больше нуля имеет хотя бы один корень (комплексный или действительный),но тогда и произведение многочленов должно иметь этот корень,но многочлен C(x)=A(x)*B(x)=1 ,не может иметь корней тк 1 не равно 0.
А значит оба многочлена A(x) и B(x) имеют нулевую степень (константы),таким образом B(x)=c.(с не равно 0)
Q(x)=c*P(x)
Пусть многочлен A(x) имеет степень n ,а многочлен B(x) имеет степень m.Тогда очевидно, что многочлен A(x)*B(x) имеет степень m+n, но 1 это многочлен нулевой степени:
m+n=0
Тк m>=0 и n>=0, то m=n=0.
То есть B(x)=c (с не равно 0)
Q(x)=c*P(x) ,что и требовалось доказать.
Чтобы прибавить, или отнять дроби с разными знаменателями, мы приводим к наименьшему общему знаменателю, и прибавляем(или отнимаем)
Если числитель и знаменатель дроби умножить или разделить на одно и тоже натуральное число, то получится равная ей дробь.
Это значит разделить и числитель и знаменатель на одно и то же число, не равное нулю. Например дробь 2/4 сокращаем на два:1/2.5/10 сокращаем на 5=1/2
незнаю, наверное до бесконечности
Дробь называют несократимой тогда, когда сократить эту дробь невозможно...
Сори, времени сейчас нет, дальше не могу решать..