ОДЗ: х принадлежит (-бесконечность; -4) U (4; +бесконечность)
для нахождения экстремума нужно найти производную...
f ' (x) = ((2x-5)(x+4) - (x^2-5x)) / (x+4)^2 = (2x^2 + 3x - 20 - x^2 + 5x) / (x+4)^2 =
= (x^2 + 8x - 20) / (x+4)^2 = (x-2)(x+10) / (x+4)^2
решение неравенства (x-2)(x+10) / (x+4)^2 > 0 (корни: -10; -4; 2)
х принадлежит (-бесконечность; -10) U (2; +бесконечность) =>
функция возрастает при х принадлежит (-бесконечность; -10] U [2; +бесконечность)
функция убывает при х принадлежит [-10; -4) U (-4; 2]
при х = -10 ---функция достигает максимума fmax = (100+50)/(-6) = -25
при х = 2 ---функция достигает минимума fmin = (4-10)/6 = -1
система:
9x - x^2 > 0
5 - x > 0
lg(5-x) не равен 0
x(9 - x) > 0
x < 5
5 - x не равно 1
х принадлежит (-бесконечность; 0) U (9; +бесконечность)
х принадлежит (-бесконечность; 5)
х не равен 4
х принадлежит (-бесконечность; 0) --- x < 0
найдем одз. под корнем может находиться только неотрицательное значение, значит 5-х> =0, откуда х< =5. корень может принимать только неотрицательные значения, значит 5-х^2> =0, откуда х^2< =5, откуда |х|< =√5, откуда -√5< =х< =√5.
теперь решение:
вoзведем в квадрат:
(5-x^2)^2=5-x
25-10x^2+x^4=5-x
x^4-10x^2+x+20=0
(x^2-x-4)(x^2+x-5)=0
1) x^2-x-4=0
d=17
x(1)=(1+√17)/2> (1+√16)/2=(1+4)/2=5/2=√5*√5/2> √5*√4/2=√5. значит этот корень не подходит.
x(2)=(1-√17)/2 подставляя в изначальное уравнение, проверяем, что этот корень подходит.
2) x^2+x-5=0
d=21
x(1)=(-1+√21)/2 подставляя в изначальное уравнение, проверяем, что этот корень подходит.
x(2)=(-1-√21)/2< (-1-√16)/2=-5/2=-√5*√5/2< -√5*√4/2=-√5. значит этот корень не подходит.
ответ: х(1)=(1-√17)/2, х(2)=(-1+√21)/2.