М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vdoncov23
vdoncov23
03.11.2022 16:01 •  Алгебра

Найди область определения функции

👇
Ответ:
emilligrin
emilligrin
03.11.2022

3)  Знаменатель дроби не может быть равен 0 .

y=\dfrac{5}{x^2-16}\ \ \ \Rightarrow \ \ \ x^2-16\ne 0\ \ ,\ \ \ (x-4)(x+4)\ne 0\ \ ,x\ne 4\ ,\ x\ne -4\ \ \ \Rightarrow \ \ \boldsymbol{x\in (-\infty ;-4\ )\cup (-4\, ;\, 4\, )\cup (\ 4\ ;+\infty )}  

4)  Подкоренное выражение должно быть неотрицательным, а так как корень находится в знаменателе, то ещё и не равным нулю, поэтому

y=\dfrac{5}{\sqrt{2x-8}}\ \ \ \Rightarrow \ \ \ 2x-8 0\ \ ,\ \ 2x 8\ \ ,\ \ x 4\ \ ,boldsymbol{x\in (\ 4\ ;+\infty )}

4,5(42 оценок)
Открыть все ответы
Ответ:
Школьниқ
Школьниқ
03.11.2022

ответ:Отметь как лучший ответ

Объяснение:

1) Найти область определения функции; 

Ограничений нет - х ∈ R (знаменатель не может быть равен нулю).

2) Исследовать функцию на непрерывность; 

Непрерывна, так как нет точек разрыва функции.

3) Определить, является ли данная функция четной, нечетной; 

f(-x) = ((-x)-3)²/((-x)² +9) = (x+3)²/(x² +9) ≠ f(-x) ≠ -f(-x).

 Функция не чётная и не нечётная.

4) Найти интервалы функции и точки её экстремума ; 

Находим производную функции.

y' = 6(x-3)(х+3)/(x² + 9)².

Приравняв её нулю (достаточно только числитель), имеем 2 корня:

х = 3 и х = -3.

Имеем 3 промежутка (-∞; -3), (-3; 3) и (3; ∞).

Находим знаки производной на этих промежутках.

Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.

x =      -4        -3              0             3                4

y' = 0,0672      0        -0,66667       0          0,0672.

Отсюда получаем:

Функция возрастает на промежутках  (-∞; -3), (3; +∞) и убывает на промежутке (-3; 3)

Экстремумов  два:

 - максимум в точке х = -3,

 - минимум в точке  х = 3.

5) Найти интервалы выпуклости и вогнутости и точки перегиба графика функции; 

Находим вторую производную.

y'' = -12х(x² - 27)/(x² + 9)³.

Приравняв нулю, имеем 3 точки перегиба:

х = 0, х = √27 = 3√3 и х = -3√3.

6) Найти асимптоты графика функции.

Асимптота есть одна горизонтальная у =1.

График функции, таблица точек для его построения приведены в приложении.

4,6(41 оценок)
Ответ:
Рокистка068
Рокистка068
03.11.2022
23.17
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.

23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число 
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
4,7(47 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ