[подчёркнутое число обозначает, что в его записи 100 цифр] Запишем число 333...333 в виде произведения: 333333 = 3* 111111 Множители взаимно простые, значит искомое число Х должно делиться на оба числа: 3 и 111...111 1) Чтоб число Х делилось на 3, количество единичек в нём должно быть кратно 3. 2) Чтоб число Х делилось на 111...111, число Х должно содержать целое число групп по сто единичек: одну, две, три, четыре и так далее. Наименьшее из чисел, которое удовлетворяет этим двум условиям - это 111111...111111 (300 единичек)
[подчёркнутое число обозначает, что в его записи 100 цифр] Запишем число 333...333 в виде произведения: 333333 = 3* 111111 Множители взаимно простые, значит искомое число Х должно делиться на оба числа: 3 и 111...111 1) Чтоб число Х делилось на 3, количество единичек в нём должно быть кратно 3. 2) Чтоб число Х делилось на 111...111, число Х должно содержать целое число групп по сто единичек: одну, две, три четыре и так далее. Наименьшее из чисел, которое удовлетворяет этим двум условиям - это 111111...111111 (300 единичек)
Відповідь:
6x - 3(x - 1) ≤ 2 + 5x
Упростимо вираз:
6x - 3x + 3 ≤ 2 + 5x
x + 3 ≤ 2 + 5x
3 - 2 ≤ 5x - x
1 ≤ 4x
x ≥ 1/4
Пояснення: