У прямокутний трикутник з гіпотенузою 16 см і гострим кутом 30° вписано прямокутник, дві вершини якого лежать на гіпотенузі, а дві інші – на катетах. Якими мають бути сторони прямокутника, щоб його площа була найбільшою?
a - сторона, яка лежить на одному катеті, і b - сторона, яка лежить на іншому катеті.
a + b = 16 (за теоремою Піфагора)
S = a * b
b = 16 - a
S = a * (16 - a) = 16a - a^2
Тепер ми маємо квадратичну функцію площі прямокутника S відносно сторони a. Щоб знайти значення a, яке максимізує площу, можна взяти похідну від S по a, прирівняти її до нуля і розв'язати рівняння.
dS/da = 16 - 2a = 0
16 - 2a = 0
2a = 16
a = 8
b = 16 - a = 16 - 8 = 8
Таким чином, оптимальні сторони прямокутника, щоб його площа була найбільшою, будуть a = 8 см і b = 8 см.
Если f (строго) возрастает на отрезке [a, b], то для любых x<y из отрезка [a, b] верно, что f(x)<f(y), в частности для любых x из отрезка [a, b] выполняется f(x)<f(b). Аналогично, если f (строго) убывает на отрезке [b, c], то для любых x>y из отрезка [a, b] верно, что f(y)>f(x), в частности для любых x из отрезка [b, c] выполняется f(b)>f(x). f(b) - наибольшее значение на отрезках [a, b] и [b, c], тогда оно наибольшее значение и на объединении отрезков.
Для минимума: если функция f убывает на отрезке [b ; c] возрастает, а на отрезке [a; b] убывает, то в точке b функция имеет минимум, причем f(b) -наименьшее значение f на отрезке [a; c]. Доказательство: Если f (строго) возрастает на отрезке [b, c], то для любых x<y из отрезка [b, c] верно, что f(y)<f(x), в частности для любых x из отрезка [a, b] выполняется f(b)<f(x). Аналогично, если f (строго) убывает на отрезке [a, b], то для любых x>y из отрезка [a, b] верно, что f (x)>f(y), в частности для любых x из отрезка [a, b] выполняется f(b)<f(x). f(b) - наименьшее значение на отрезках [a, b] и [b, c], тогда оно наименьшее значение и на объединении отрезков.
Если f (строго) возрастает на отрезке [a, b], то для любых x<y из отрезка [a, b] верно, что f(x)<f(y), в частности для любых x из отрезка [a, b] выполняется f(x)<f(b). Аналогично, если f (строго) убывает на отрезке [b, c], то для любых x>y из отрезка [a, b] верно, что f(y)>f(x), в частности для любых x из отрезка [b, c] выполняется f(b)>f(x). f(b) - наибольшее значение на отрезках [a, b] и [b, c], тогда оно наибольшее значение и на объединении отрезков.
Для минимума: если функция f убывает на отрезке [b ; c] возрастает, а на отрезке [a; b] убывает, то в точке b функция имеет минимум, причем f(b) -наименьшее значение f на отрезке [a; c]. Доказательство: Если f (строго) возрастает на отрезке [b, c], то для любых x<y из отрезка [b, c] верно, что f(y)<f(x), в частности для любых x из отрезка [a, b] выполняется f(b)<f(x). Аналогично, если f (строго) убывает на отрезке [a, b], то для любых x>y из отрезка [a, b] верно, что f (x)>f(y), в частности для любых x из отрезка [a, b] выполняется f(b)<f(x). f(b) - наименьшее значение на отрезках [a, b] и [b, c], тогда оно наименьшее значение и на объединении отрезков.
a - сторона, яка лежить на одному катеті, і b - сторона, яка лежить на іншому катеті.
a + b = 16 (за теоремою Піфагора)
S = a * b
b = 16 - a
S = a * (16 - a) = 16a - a^2
Тепер ми маємо квадратичну функцію площі прямокутника S відносно сторони a. Щоб знайти значення a, яке максимізує площу, можна взяти похідну від S по a, прирівняти її до нуля і розв'язати рівняння.
dS/da = 16 - 2a = 0
16 - 2a = 0
2a = 16
a = 8
b = 16 - a = 16 - 8 = 8
Таким чином, оптимальні сторони прямокутника, щоб його площа була найбільшою, будуть a = 8 см і b = 8 см.
якщо щось не зрозуміло пиши я відповім