М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
вика3875
вика3875
01.08.2022 07:37 •  Алгебра

Найти угловой коэффициент касательной к графику функции f(x) = -2sin8x в точке с абсциссой x₀= - (п/6). , ,

👇
Ответ:
alieismailova1
alieismailova1
01.08.2022
ответ:

всё во вложении

-16 cos 8 x0 это выражение.Теперь полставим значение

-16cos 8 -(п/6)=-16 cos (-4п/3)=-16×(-1/2)=8

4,6(96 оценок)
Ответ:
oksanademyanov
oksanademyanov
01.08.2022

y' = - 2 (sin (8x)) ' (8x)'= - 2 * 8 cos 8x=-16 cos8x

f '(x0) = - 16 cos8 x0

f '( pi/6)=

= - 16cos(8 \times \frac{\pi}{6} ) = - 16cos \frac{4\pi}{3} = - 16 \times 4 \times \frac{1}{2} = - 32

k=tga=y'(x0)

по геометрическому смыслу производной


Найти угловой коэффициент касательной к графику функции f(x) = -2sin8x в точке с абсциссой x₀= - (п/
4,5(36 оценок)
Открыть все ответы
Ответ:
прог13
прог13
01.08.2022

Парабола: определение, свойства, построение

Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением

y2=2px  

при условии p>0.

Из уравнения (1) вытекает, что для всех точек параболы x≥0. Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.

Форма параболы известна из курса средней школы, где она встречается в качестве графика функции y=ax2. Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством 2p=a−1.

Фокусом параболы называется точка F с координатами (p/2,0) в канонической системе координат.

Директрисой параболы называется прямая с уравнением x=−p/2 в канонической системе координат

Утверждение.

Расстояние от точки M(x,y), лежащей на параболе, до фокуса равно

r=x+p2

Доказательство.

Вычислим квадрат расстояния от точки M(x,y) до фокуса по координатам этих точек: r2=(x−p/2)2+y2 и подставим сюда y2 из канонического уравнения параболы. Мы получаем

r2=(x−p2)2+2px=(x+p2)2.

Отсюда в силу x≥0 следует равенство

4,4(20 оценок)
Ответ:
Nastena11102003
Nastena11102003
01.08.2022

Парабола: определение, свойства, построение

Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением

y2=2px  

при условии p>0.

Из уравнения (1) вытекает, что для всех точек параболы x≥0. Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.

Форма параболы известна из курса средней школы, где она встречается в качестве графика функции y=ax2. Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством 2p=a−1.

Фокусом параболы называется точка F с координатами (p/2,0) в канонической системе координат.

Директрисой параболы называется прямая с уравнением x=−p/2 в канонической системе координат

Утверждение.

Расстояние от точки M(x,y), лежащей на параболе, до фокуса равно

r=x+p2

Доказательство.

Вычислим квадрат расстояния от точки M(x,y) до фокуса по координатам этих точек: r2=(x−p/2)2+y2 и подставим сюда y2 из канонического уравнения параболы. Мы получаем

r2=(x−p2)2+2px=(x+p2)2.

Отсюда в силу x≥0 следует равенство

4,7(97 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ