Умножим числитель и знаменатель на число сопреженное со знаменатем. в знаменателе мы получим разность квадратов. (2√5)^2-(√7)^2=4*5-7=13 1/(2√5-√7)=(2√5+√7)/13
Разделите число желаемых событий на общее число возможных событий. Вы получите вероятность происшествия единичного события. В случае с выпадением числа три на игральной кости (на игральной кости только одна тройка), вероятность можно выразить как 1 ÷ 6, 1/6, .166, или 16.6%. Вот примеры вычисления вероятности для других примеров:Пример 1: Какова вероятность выбрать выходной день, случайно выбирая число?Так как в неделе два выходных, то число желаемых событий будет 2, а число возможных событий равно 7. Вероятность будет равна 2 ÷ 7 = 2/7, или .285, или 28.5%.Пример 2: В банке с мармеладом находится 4 синих, 5 красных и 11 белых шариков. Если предположить, что шарики перемешаны и вытаскиваются случайным образом, какова вероятность вытащить красный?Число желаемых событий равняется количеству красных шариков в банке – 5, общее число событий равняется 20. Вероятность 5 ÷ 20 = ¼, или 0.25, или 25%.
в знаменателе мы получим разность квадратов.
(2√5)^2-(√7)^2=4*5-7=13
1/(2√5-√7)=(2√5+√7)/13
Сюзанна поставь "лучшее"