Сначала выражаем одну переменную через другую ( x y - переменные): x+2y=6...Выразим переменную x отсюда. Получается, что x = 6 - 2y Дальше подставляем значение x ( то что после знака " = ") во второе уравнение. Получаем 1) 2(6 - 2y) - y = 0 2) 12 - 4y - y = 0 3) -5y = -12 4) y = 12/5 ( 12 делить на 5) Все, значение у мы имеем. Далее, чтобы найти значение x подставляем значение y в любое выражение, содержащие переменную x. Например, самое первое уравнение, откуда мы выражали x ( x = 6 - 2y). Можно подставить y сюда x = 6 - 24/5 = 6/5
Значит, ответы такие y = 12/5 x = 6/5
Проверяем x + 2y = 0 6/5 + 2( 12/5 ) = 6 6 = 6 Да, равенство выполняется, а значит, значения, которые мы нашли для y и x были верны
2) Найти значение производной f(x) =x³ в точке с абциссой x0=1.
Решение:
f'(x) =(x³)' =3x²
при х=1
f'(1) =3*1² =3
ответ: 3
3) Найдите угловой коэффициент касательной, проведённый к графику функции f(x)=3x³+2x-5 в его точке с абциссой х0=2.
Решение: Угловой коэффициент касательной к графику функции в точке хо равен производной функции в точке хо. Найдем производную. f'(x)=(3x³+2x-5)'=(3x³)'+(2x)'-(5)' =3*3x² +2-0 =9x²+2 Найдем значение производной в точке хо f'(2) = 9*2²+2 =36+2=38
ответ: 38
4) Найдите промежутки возрастания функции f(x)=-3x²-36x.
Найдем критические точки приравняв производную к нулю
f'(x)=0 -6x-36 =0 6x=-36 x=-6 На числовой прямой отобразим эту точку и определим знаки производной по методу подстановки. Например при х=0 f'(0) =-36<0 + 0 - -----------!----------- -6
Функция возрастает на промежутке (-∞;-6) так как производная больше нуля
Иначе можно определить интервал возрастания сразу решив неравенство f'(x)>0 -6x-36>0 6x+36<0 6x<-36 x<-6 ответ: (-∞;-6)
решаем квадратное уравнение))