и 
. Чтобы найти координату 
 точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем:
 можем найти подставив 
 в выражение первой функции 
, а можно сделать проще. Так как пересечение будет с прямой 
, то и точки пересечения будут иметь координату 
. Итак, получилось две точки пересечения с координатами: 
.
 (этот отрезок по оси 
), найдем значения 
 на концах этого отрезка:

                                                
D = k^2 - ac = 49 + 15 = 64
D > 0, 2 корня.
x1 = - k - корень из Дискриминанта/а = -7 - 8/ 5 = -3
x2 = - k + корень из Дискриминанта/а = -7 + 8/5 = 1/5 = 0.2
9) x^2 + 6 = 5x
x^2 + 6 - 5x = 0
x^2 - 5x +6 = 0
D = b^2 - 4ac = 25 - 24 = 1
D > 0 . 2k
x1 = -b - корень из Дискриминанта/2а = 5 - 1/2 = 2
x2 = -b + корень из Дискриминанта/2а = 5+1/2 = 3