√√Пусть длина трассы x м, стартуют они в точке А, а встречаются в В. 1-ое тело имеет скорость v1 (м/мин), 2-ое тело v2 < v1 (м/мин). В момент встречи оба тела вместе проехали весь круг, за время t = x/(v1+v2) (мин) При этом 1-ое тело на 100 м больше, чем 2-ое тело. v1*t = v2*t + 100 v1*x/(v1+v2) = v2*x/(v1+v2) + 100 Умножаем все на (v1+v2) v1*x = v2*x + 100(v1+v2) x(v1-v2) = 100(v1+v2) x = 100(v1+v2)/(v1-v2)
1-ое тело вернулось в точку А через 9 мин, то есть за 9 мин оно расстояние, которое до встречи ое тело за t мин. v1*9 = v2*t = v2*x/(v1+v2) 9v1(v1+v2) = v2*x А 2-ое тело вернулось в А через 16 мин, то есть за 16 мин оно расстояние, которое перед этим ое тело за t мин. v2*16 = v1*t = v1*x/(v1+v2) 16v2(v1+v2) = v1*x
Получили систему из 3 уравнений с 3 неизвестными. { x = 100(v1+v2)/(v1-v2) { 9v1(v1+v2) = v2*x { 16v2(v1+v2) = v1*x Подставляем 1 уравнение во 2 и 3 уравнения { 9v1(v1+v2) = v2*100(v1+v2)/(v1-v2) { 16v2(v1+v2) = v1*100(v1+v2)/(v1-v2) Сокращаем (v1+v2) { 9v1 = 100v2/(v1-v2) { 16v2 = 100v1/(v1-v2) Получаем { 0,09v1 = v2/(v1-v2) { 0,16v2 = v1/(v1-v2)
1) Если выражение (2х+7)^4 + (2x-4)^4 равно 0, то у него 4 корня, все они имеют выражения с мнимыми числами. Если раскрыть скобки, получим: 32x⁴ + 96x³ + 1560x² + 2232x + 2657 = 0 Корни полинома равны :x1 ≈ −0.750000000000003 − i ∙ 6.63908729652601 P(x1) ≈ 0 iter = 1 x2 ≈ −0.75 + i ∙ 1.13908729652601 P(x2) ≈ 0 iter = 6 x3 ≈ −0.75 − i ∙ 1.13908729652601 P(x3) ≈ 0 iter = 4 x4 ≈ −0.749999999999997 + i ∙ 6.63908729652601 P(x4) ≈ 0 iter = 1 2) А = 0,6Б А + 84 = 1,4Б А = 1,4Б-84 Приравниваем правые части этих уравнений: 0,6Б = 1,4Б-84 2Б = 84 Б = 84 / 2 = 42 А = 0,6*42 = 25,2 А + Б = 42 + 25,2 = 67,2.
a1q+a1q²=10⇒a1(q+q²)=10⇒a1=10/(q+q²)
30/(1+q)(1-q+q²)=10/q(1+q)
3/(1-q+q²)=1/q
1-q+q²-3q=0
q²-4q+1=0
D=16-4=12
q1=(4-2√3)/2=2-√3⇒a1=10/(9-5√3)=5(9+5√3)/3
q2=2+√3⇒a1=10/(9+5√3)=5(9-5√3)/3