ответ:
объяснение:
дифференциальное уравнение — это уравнение, в которое входят функция и одна или несколько ее производных. в большинстве практических функции представляют собой величины, производные соответствуют скоростям изменения этих величин, а уравнение определяет связь между ними.
в данной статье рассмотрены методы решения некоторых типов обыкновенных дифференциальных уравнений, решения которых могут быть записаны в виде элементарных функций, то есть полиномиальных, экспоненциальных, логарифмических и тригонометрических, а также обратных им функций. многие из этих уравнений встречаются в реальной жизни, хотя большинство других дифференциальных уравнений нельзя решить данными , и для них ответ записывается в виде специальных функций или степенных рядов, либо находится численными .
для понимания данной статьи необходимо владеть дифференциальным и интегральным исчислением, а также иметь некоторое представление о частных производных. рекомендуется также знать основы линейной в применении к дифференциальным уравнениям, особенно к дифференциальным уравнениям второго порядка, хотя для их решения достаточно знания дифференциального и интегрального исчисления.



![\left[\begin{array}{l} x \in [ -2 ; 2 ] \ , \\ x \in [ 4 ; 8 ] \ ; \end{array}\right](/tpl/images/0535/4278/f86a2.png)
![x \in [ -2 ; 2 ] \cup [ 4 ; 8 ] \ ;](/tpl/images/0535/4278/5c623.png)

![x \in [ -2 ; 2 ] \ ;](/tpl/images/0535/4278/03b6e.png)



![x \in [ 4 ; 8 ] \ ;](/tpl/images/0535/4278/2613a.png)


![x \in [ -1 ; 1 ] \ ;](/tpl/images/0535/4278/899ca.png)





![\left[\begin{array}{l} x \in [ 4 ; 5 ] \ , \\ x \in [ 7 ; 8 ] \ ; \end{array}\right](/tpl/images/0535/4278/7e7a6.png)
![x \in [ 4 ; 5 ] \cup [ 7 ; 8 ] \ ;](/tpl/images/0535/4278/70a2f.png)
