М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
magauiyaa
magauiyaa
10.10.2020 04:33 •  Алгебра

Представьте многочлен в виде произведения суммы и разности двух выражений? 1)25x²-0,04 2)4p²q²-9q-в 4 степени 3)-400+r-в 12 степени

👇
Ответ:
CrazyBublic02
CrazyBublic02
10.10.2020
Решениееееееееееееееееееее

Представьте многочлен в виде произведения суммы и разности двух выражений? 1)25x²-0,04 2)4p²q²-9q-в
4,7(28 оценок)
Открыть все ответы
Ответ:
apple122
apple122
10.10.2020

24 см.

Объяснение:

Пусть один катет прямоугольного треугольника будет а см , а другой  bсм.

Тогда площадь равна 0,5*а* b, а  квадрат гипотенузы найдем по теореме Пифагора а² + b² . Так как по  условию площадь равна 24 см², а гипотенуза равна 10 см , то составляем систему уравнений:

\left \{ \begin{array}{lcl} {{0,5ab=24|*4,} \\ {a^{2}+b^{2}=100; }} \end{array} \right.\Leftrightarrow\left \{ \begin{array}{lcl} {{2ab=96} \\ {a^{2}+b^{2} =100;}} \end{array} \right.\Leftrightarrow\left \{ \begin{array}{lcl} {{2ab=96,} \\ {a^{2} +ab+b^{2} =196;}} \end{array} \right.\Leftrightarrow\\\\\left \{ \begin{array}{lcl} {{ab=48,} \\ {(a+b)^{2} =196;}} \end{array} \right.\Leftrightarrow

\left \{ \begin{array}{lcl} {{ab=48,} \\ {\left [ \begin{array}{lcl} {{a+b=14,} \\ {a+b=-14.}} \end{array} \right.}} \end{array} \right.\Leftrightarrow\left [ \begin{array}{lcl} {\left \{ \begin{array}{lcl} {{ab=48,} \\ {a+b=14;}} \end{array} \right.{} \\ {\left \{ \begin{array}{lcl} {{ab=48,} \\ {a+b=-14}.} \end{array} \right.}} \end{array} \right.

Так как a и b катеты прямоугольного треугольника , а значит положительные числа .Тогда их сумма не может быть отрицательным числом. Поэтому вторая система не подходит по смыслу задачи.

\left \{ \begin{array}{lcl} {{ab=48,} \\ {a+b=14;}} \end{array} \right.\Leftrightarrow\left \{ \begin{array}{lcl} {{(14-b)*b=48,} \\ {a=14-b;}} \end{array} \right.\Leftrightarrow\left \{ \begin{array}{lcl} {{14b-b^{2} =48,} \\ {a=14-b;}} \end{array} \right.\Leftrightarrow\\\left \{ \begin{array}{lcl} {{b^{2} -14b+48=0,} \\ {a=14-b.}} \end{array} \right.

Решим квадратное уравнение:

b^{2} -14b+48=0;\\D{_1}= 49-48=10\\\left [ \begin{array}{lcl} {{b=6,} \\ {b=8.}} \end{array} \right.

 Если b=6, то а=8

 Если b=8, то а=6

Значит катеты прямоугольного треугольника 6 см и 8 см. Тогда периметр ( сумма длин всех сторон треугольника)

P= 6+8+10 = 24 (см)

4,4(55 оценок)
Ответ:
браинли56
браинли56
10.10.2020
x\cdot y'=x \cdot e^\big{ \frac{y}{x} }+y
Убедимся, что данное дифференциальное уравнение является однородным. 

То есть, воспользуемся условием однородности
\lambda x\cdot y'=\lambda x \cdot e^\big{ \frac{\lambda y}{\lambda x} }+\lambda y\\ \\ \lambda x\cdot y'=\lambda(x \cdot e^\big{ \frac{\lambda y}{\lambda x} }+y)\\ \\ x\cdot y'=x \cdot e^\big{ \frac{y}{x} }+y
Итак, данное дифференциальное уравнение является однородным.

Однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными относительно новой неизвестной функции u=u(x) с замены:
  y=ux, тогда y'=u'x+u
x\cdot (u'x+u)=x\cdot e^\big{ \frac{ux}{x} }+ux\\ \\ x\cdot (u'x+u)=x(e^u+u)\\ \\ u'x+u=e^u+u

u'x=e^u
По определению дифференциала, получаем
\dfrac{du}{dx} \cdot x=e^u - уравнение с разделяющимися переменными.
Разделим переменные.
\dfrac{du}{e^u} = \dfrac{dx}{x} - уравнение с разделёнными переменными.

Проинтегрируем обе части уравнения
\displaystyle \int\limits { \frac{du}{e^u} } \,=\int\limits { \frac{dx}{x} } \\ \\ \int\limits {e^{-u}} \, du=\int\limits { \frac{1}{x} } \, dx
-e^{-u}=\ln |x|+C - общий интеграл новой функции.

Таким образом, определив функцию u из решения уравнения с разделяющимися переменными, чтобы записать решение исходного однородного уравнения, остаётся выполнить обратную замену: u= \dfrac{y}{x}

То есть, 

-e^\big{-\frac{y}{x} }=\ln |x|+C - общий интеграл исходного уравнения.
Остаётся определить значение произвольной постоянной C. Подставим в общий интеграл начальное условие:
-e^\big{- \frac{0}{1} }=\ln |1|+C\\ C=-1

-e^\big{-\frac{y}{x} }=\ln |x|-1 - частный интеграл, также является решением данного дифференциального уравнения.


ответ: -e^\big{-\frac{y}{x} }=\ln |x|-1
4,8(8 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ