М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ozilpro228
ozilpro228
30.10.2022 11:43 •  Алгебра

Составьте уравнение горизонтальной ассимптоты графика последовательности yn= 1 + n/2n+1

👇
Ответ:
Exem76
Exem76
30.10.2022

Горизонтальная асимтота суть предел.

Найдем предел

1 + \frac{x}{2x + 1} = 1 + \frac{1}{2 + \frac{1}{x} }

пследнее выражение, очевидно, стремится к

1 + \frac{1}{2} =1.5

Итого, горизонтальная асимптота:

у=1.5

4,8(79 оценок)
Открыть все ответы
Ответ:
BrainSto
BrainSto
30.10.2022
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k y=kx+m : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором y=4- \frac{1}{3}x; k=- \frac{1}{3}. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения x_1; x_2, два произвольных числа, но x_1\ \textless \ x_2 . Пусть мы имеем функцию y=f(x), тогда вычисляем значения функции в этих двух точках, имеем f(x_1) и f(x_2), так вот, если x_1\ \textless \ x_2; f(x_1)\ \textless \ f(x_2);, тогда функция возрастающая, если же x_1\ \textless \ x_2; f(x_1)\ \textgreater \ f(x_2), то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)y=x^3+1; x_1=-2; f(x_1)=(-2)^3+1=-7; x_2=4;x_1\ \textless \ x_2 \\ f(x_2)=4^3+1=65; f(x_1)\ \textless \ f(x_2), т.е. функция возрастающая. А вот задание с y= \frac{x^2}{2} не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) y= \frac{x^2}{2}; y'= \frac{2x}{2}=x;. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): x_1=1; x_2=2; x_1\ \textless \ x_2; f(x_1)= \frac{1}{2};f(x_2)=2; f(x_1)\ \textless \ f(x_2), функция возрастает, что и требовалось доказать.
4,7(58 оценок)
Ответ:
staennayanina
staennayanina
30.10.2022
Так вроде не трудно... из первого уравнения можно записать:
x = -(y+z)
подставим во второе...
-(y+z)*y +yz = -1
-y^2 - yz + yz = -1
y^2 = 1
y = +-1
тогда или x = -1-z   или   x = 1-z
осталось третье уравнение...
(-1-z)^2 + 1 + z^2 = 6   или   (1-z)^2 + 1 + z^2 = 6
z^2 + z - 2 = 0   или   z^2 - z - 2 = 0 
z1 = -2   z2 = 1   или   z3 = -1   z4 = 2
x1 = 1    x3 = -2  или   x5 = 0    x7 = -3
x2 = 3    x4 = 0           x6 = 2    x8 = -1
ответы:
(1; 1; -2), 
(-2; 1; 1),
(2; -1; -1),
(-1; -1; 2) --- просто постараться не перепутать... аккуратно записать...
и проверить... эти возможные сочетания корней не подходят --- не удовлетворяют третьему уравнению
(т.к. при возведении в квадрат возможно появление лишних корней...)))
(0; 1; -1),
(-3; 1; 2),
(3; -1; -2), 
(0; -1; 1)
4,6(60 оценок)
Это интересно:

MOGZ ответил

Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ