sin²x + 2sinx×cosx - 3cos²x + 2 = 0
sin²x + 2sinx×cosx - 3cos²x + 2×1 = 0
sin²x + 2sinx×cosx - 3cos²x + 2(sin²x + cos²x) = 0
sin²x + 2sinx×cosx - 3cos²x + 2sin²x + 2cos²x = 0
3sin²x + 2sinx×cosx - cos²x = 0 | ÷ cos²x
3tg²x + 2tan x - 1 = 0
Пусть tg x = a, тогда:
3a² + 2a - 1 = 0
D = 2² - 4×3×(-1) = 4 + 12 = 16
x₁ = -2+√16/2×3 = -2+4/6 = 2/6 = 1/3
x₂ = -2-√16/2×3 = -2-4/6 = -6/6 = -1
tg x = 1/3 или tg x = -1
x₁ = arctg(1/3) + πn x₂ = arctg(-1) + πn
x₁ = 0,321751 + πn x₂ = 3π/4 + πn
x₁ = 18,4° + πn, n∈Z x₂ = 135° + πn, n∈Z



![\left[\begin{array}{l} x \in [ -2 ; 2 ] \ , \\ x \in [ 4 ; 8 ] \ ; \end{array}\right](/tpl/images/0535/4278/f86a2.png)
![x \in [ -2 ; 2 ] \cup [ 4 ; 8 ] \ ;](/tpl/images/0535/4278/5c623.png)

![x \in [ -2 ; 2 ] \ ;](/tpl/images/0535/4278/03b6e.png)



![x \in [ 4 ; 8 ] \ ;](/tpl/images/0535/4278/2613a.png)


![x \in [ -1 ; 1 ] \ ;](/tpl/images/0535/4278/899ca.png)





![\left[\begin{array}{l} x \in [ 4 ; 5 ] \ , \\ x \in [ 7 ; 8 ] \ ; \end{array}\right](/tpl/images/0535/4278/7e7a6.png)
![x \in [ 4 ; 5 ] \cup [ 7 ; 8 ] \ ;](/tpl/images/0535/4278/70a2f.png)

d=29-33=-4
S12=(2a1+11d)/2*n=(66-44)/2*12=11*12=132