М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
мир276
мир276
08.09.2022 14:13 •  Алгебра

Как решать? log(x-6) по основанию7=2

👇
Ответ:
log ( x - 6 ) по основанию 7 = 2
( x - 6 ) = 7 во второй степени  
х - 6 = 49
х = 55
4,8(26 оценок)
Открыть все ответы
Ответ:
NickMean
NickMean
08.09.2022

\mathrm{arcctg}(\mathrm{ctg}\,6)

Известно соотношение:

\mathrm{arcctg}(\mathrm{ctg}\,x)=x,\ x\in(0;\ \pi)

Кроме этого, известно, что основной период котангенса равен \pi:

\mathrm{ctg}\,x=\mathrm{ctg}\,(x+\pi k),\ k\in\mathbb{Z}

Таким образом, аргумент 6 нужно заменить некоторым аргументом вида 6+\pi k,\ k\in\mathbb{Z}, чтобы с одной стороны котангенсы этих аргументов были равны, а с другой стороны полученный аргумент удовлетворял формуле для простого нахождения арккотангенса от котангенса.

Запишем неравенство:

0

-6

-\dfrac{6}{\pi} < k

-\dfrac{6}{\pi} < k

Выполним оценку обеих частей неравенства:

-\dfrac{6}{\pi} -\dfrac{6}{3}=-2

\dfrac{\pi}{6}-1

Получим:

-2

Или записывая соотношение для k:

-2< k

Единственное подходящее целое значение: k=-1.

Запишем:

\mathrm{arcctg}(\mathrm{ctg}\,6)=\mathrm{arcctg}(\mathrm{ctg}\,(6-\pi))=6-\pi

Действительно, 0, арккотангенс может принимать такое значение.

ответ: \mathrm{arcctg}(\mathrm{ctg}\,6)=6-\pi

4,7(84 оценок)
Ответ:
PicaChuShiK
PicaChuShiK
08.09.2022

Объяснение:

выражение в квадратном корне должно давать положительный результат, иначе выражение не

имеет смысла

1) √х. х не должен быть –1 или каким-то другим отрицательным числом, поэтому выражение имеет смысл при х (0; +∞)

2) √х². Здесь х также может быть и отрицательным, поскольку он возведён во вторую степень, которая даёт положительный результат в любом случае поэтому: х (–∞; +∞)

3) √–х. х не должен быть положительным, поскольку при положительном х у нас получится отрицательный итог, например при х=1 =√–1, это недопустимо, поэтому х должен быть: х≤0 и значение следующие: х (–∞; 0)

5) √25х. х должен быть 0 или положительное значение:

х≥0, поэтому х (0; +∞)

4) √–3х. х должен быть отрицательным, чтобы выражение давало положительный результат:

х (–∞; –1)

6) √0,01х, х≥0; х (0; +∞)

7)

\sqrt{ \frac{ - 7x}{5} }

х ≥ 0; х (–∞; 0)

8)

\sqrt{81x {}^{2} }

х может быть как положительным так и отрицательным, поскольку он возведён во вторую степень и значение выражения всегда будет положительным: х (–∞; +∞)

4,5(83 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ