М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kvaki257989
kvaki257989
26.04.2020 08:10 •  Алгебра

Выражение 20а+(14b-20a^2)/a) и найдите его значение при a=20, b=14. в ответе должно получиться 9,8. напишите, , как можно подробнее, как выражение

👇
Ответ:
irinkagoncharo
irinkagoncharo
26.04.2020
20а^2/a +(14b-20a^2)/а=14b/a=196/20=9,8
4,4(50 оценок)
Открыть все ответы
Ответ:
Mymir06
Mymir06
26.04.2020

2sin2x + 3sinxcosx - 3cos2x = 1;

Представим 1 в виде суммы по основному тригонометрическому тождеству:

sin2x + 3cosxsinx - 3cos2x = sin2x + cos2x;

Приведем подобные:

sin2x + 3cosxsinx - 4cos2x = 0;

Разделим каждый член уравнения на cos2x:

tg2x + 3tgx - 4 = 0;

Произведем замену и решим квадратное уравнение:

t2 + 3t - 4 = 0;

D = 9 + 16 = 25;

t = (-3 +- 5)/2;

t1 = -4, t2 = 1;

Сделаем обратную замену:

tgx = 1; x = pi/4 + pin, n из Z;

tgx = -4; x = arctg(-4) pin, n из Z.

ответ: pi/4 + pin, n из Z; arctg(-4) pin, n из Z.

Объяснение:

Оцени!

4,8(56 оценок)
Ответ:
1) f(x)=(32/9)*(x-1)^3, уравнение касательной в какой-либо точке x1:
    y1=f(x1)+f '(x1)(x-x1) = f '(x1)x +f(x1) -f '(x1)x1
    f(x1)=(32/9)(x1-1)^2, f '(x) =(32/9)*3(x-1)^2 =(32/3)(x-1)^2, 
    f '(x1)=(32/3)(x1-1)^2
2) f(x)=x2,  уравнение касательной в какой-либо точке x2:
    y2=f(x2)+f '(x2)(x-x2) = f '(x2)x +f(x2) -f '(x2)x2
    f(x2)=(x2)^2, f '(x)=2x, f '(x2)=2(x2)
Если касательные общие, значит y1=y2, 
значит должны быть равны коэфф. перед x и свободные члены,
получаем систему уравнений с 2 неизвестными:
    f '(x1)=f '(x2), f(x1) -f '(x1)x1=f(x2) -f '(x2)x2
    1. (32/3)(x1-1)^2=2(x2); 2. (32/9)*(x1-1)^3 -x1*(32/3)(x1-1)^2=(x2)^2 -2(x2)^2
    1. ((32/3)(x1-1)^2)/(x2)^2 =2; 2.(((32/3)(x1-1)^2)/(x2)^2)((x1-1)/3 -x1)= -(x2)^2;
    подставляя первое в 2, из второго уравнения получаем:
    2(x1-1-3x1)/3 = -x2, 2(2x1+1)/3= x2, подставляем в 1.
    ((32/3)(x1-1)^2=4(2x1+1)/3, 8(x1^2 -2x1+1)=2x1+1,
    8x1^2-18x1+7=0, x1=(18+-√100)/16, x1=1/2, x1=7/4
Теперь найдем уравнения касательной y1, они же будут равны =y2:
1. x1=1/2, f(x1)=(32/9)(1/2 -1)^3=(32/9)(-1/2)^3=(32/9)(-1/8)= -4/9
    f '(x1)=(32/3)(1/2 -1)^2=(32/3)(1/4) = 8/3
    y1= -4/9 + (8/3)(x-1/2) = -4/9 +(8/3)x -8/6, обозначим y1 просто y:
   18y=48x-32, 9y=24x-16 - первое уравнение общей касательной
2. x1=7/4, f(x1)=(32/9)(7/4 -1)^3 = (32/9)(3/4)^3=(32/9)(27/64)=3/2,
    f '(x1)=(32/3)(7/4 -1)^2= (32/3)(3/4)^2=(32/3)(9/16)= 6
    y1=3/2 +6(x -7/4)=3/2+6x -21/2=6x-9, обозначим y1 просто y:
   y=6x -9 - второе уравнение общей касательной
     
4,4(56 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ