Надо смотреть на общее число игрушек 10 и на общую сумму 53 можно составлять систему цравнений x+y+z=10 3x+5у+7z=53 и решать до бесконечности а попробуем обратить внимание на второе уравнение оно состоит из Нечетной суммы и суммы трех множителей, которые если x, y, z - нечетные, то произведение нечетное и если x, x, z - четные то произведение четное, и смотреть какая сумма получается четная или нечетная . Обратим внимание, что сумма вседа Четная, а 53 это нечетное число Рассмотрим как 10 раскладывается на игрушки к примеру 1-1-8 здесь сумма четная (два множителя нечетных и один четный), 1-2-7 - опять тоже самое. Вы никогда не разложите 10 или на 3 нечетных числа или чтобы было одно нечетное число - во всех остальных случаях 3x+5e+7z ВСЕДА ЧЕТНОЕ
Только это задача ближе к олимпиадной - чем просто из 8-го класса
x² + 2 * 2 * x + 2² - 4 - 5 = 0
(х + 2)² - 9 = 0
(х + 2 - 3)(х + 2 + 3) = 0
х - 1 = 0 или х + 5 = 0
х₁ = 1 или х₂ = -5
2) x² + 4x - 12 = 0
x² + 2 * 2 * x + 2² + 4 - 4 - 12 = 0
(х + 2)² - 16 = 0
(х + 2 - 4)(х + 2 + 4) = 0
(х - 2)(х + 6) = 0
х₁ = 2 или х₂ = -6
3) x² + 2x - 15 = 0
x² + 2 * 2 * x + 2² - 4 - 15 = 0
(х + 2)² - 19 = 0
(х + 2 - √19)(х + 2 + √19) = 0
х₁ = √19 - 2 или х₂ = -2 - √19
4) x² - 10x + 16 = 0
x² - 2 * 5 * x + 25 - 25 + 16 = 0
(х - 5)² - 9 = 0
(х - 5 - 3)(х - 5 + 3) = 0
х₁ = 8 или х₂ = 2
5) x² - 6x + 3 = 0
x² - 2 * 3 * x + 9 - 9 + 3 = 0
(х - 3)² - 6 = 0
(х - 3 - √6)(х - 3 + √6) = 0
х₁ = 3 + √6 или х₂ = 3 - √6
6) x² + 8x - 7 = 0
x² + 2 * 4 * x + 16 - 16 - 7 = 0
(х + 4)² - 23 = 0
(х + 2 - √23)(х + 2 + √23) = 0
х₁ = -2 + √6 или х₂ = -2 - √23
2. Решить уравнение:
1) 9x² + 6x - 8 = 0
(3х)² + 2 * 3х * 1 + 1 - 1 - 8 = 0
(3х + 1) - 9 = 0
(3х + 1 - 3)(3х +1 + 3) = 0
3х₁ = 2 или 3х₂ = -4
х₁ =
2) 25x² - 10x - 3 = 0
(5х)² - 2 * 5х * 1 + 1 - 1 - 3 = 0
(5х - 1) - 4 = 0
(5х - 1 - 2)(5х -1 + 2) = 0
5х₁ = 3 или 5х₂ = -1
х₁ = 0,6 или х₂ = -0,2