Объяснение:
Пример 1. Пусть А – множество двузначных натуральных чисел, В – множество четных двузначных чисел. Верно ли, что В есть подмножество множества А?
ответ: Каждое четное двузначное число содержится в множестве А. Следовательно, В А.
Пример 2. Пусть А = {1; 2; 3}, В = {x | x N , х < 4}. Верно ли, что А = В.
ответ. Множество В состоит из натуральных чисел, меньших 4. Каждый элемент из А входит в В. Следовательно, А В. Но натуральных чисел, меньших 4, кроме чисел 1,2,3, нет. Следовательно, каждый элемент из В входит в А. Значит, В А. По определению, А = В.
Пример. 3. Дано множество А четных натуральных чисел и множество В натуральных чисел, кратных 4. В каком отношении включения находятся множества А и В? ответ проиллюстрировать диаграммой Эйлера-Венна.
Решение. Каждое натуральное число, кратное 4, является четным числом. Значит, B А. Но не каждое четное число обязано делится на 4. Например, 6 не делится 4, т.е. А В. Имеем диаграмму:
Пример 1. Пусть А – множество двузначных натуральных чисел, В – множество четных двузначных чисел. Верно ли, что В есть подмножество множества А?
ответ: Каждое четное двузначное число содержится в множестве А. Следовательно, В А.
Пример 2. Пусть А = {1; 2; 3}, В = {x | x N , х < 4}. Верно ли, что А = В.
ответ. Множество В состоит из натуральных чисел, меньших 4. Каждый элемент из А входит в В. Следовательно, А В. Но натуральных чисел, меньших 4, кроме чисел 1,2,3, нет. Следовательно, каждый элемент из В входит в А. Значит, В А. По определению, А = В.
Пример. 3. Дано множество А четных натуральных чисел и множество В натуральных чисел, кратных 4. В каком отношении включения находятся множества А и В? ответ проиллюстрировать диаграммой Эйлера-Венна.
Решение. Каждое натуральное число, кратное 4, является четным числом. Значит, B А. Но не каждое четное число обязано делится на 4. Например, 6 не делится 4, т.е. А В. Имеем диаграмму:
(7-1)*(7+1)(7²+1)(7^4+1)(7^8+1)(7^16+1)=(7²-1)(7²+1)(7^4+1)(7^8+1)(7^16+1)=
(7^4-1)(7^4+1)(7^8+1)(7^16+1)=(7^8-1)*(7^8+1)(7^16+1)=(7^16-1)(7^16+1)=7^32-1
(7+1)(7²+1)(7^4+1)(7^8+1)(7^16+1)=(7^32-1)/(7-1)=(7^32-1)/6
1/6*7^32-(7^32-1)/6=1/6*7^32-1/6*7^32+1/6=1/6
х²=а⇒а²-3а+1=0
D=9-4=5
x1=(3-√5)/2 U x=(3+√5)/2
x²=(3-√5)/2U x²=(3+√5)/2
x^4-3x²+1=(x²-3+√5)(x²-3-√)