По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*),
. И правда:
(*) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**),
. И правда:
(**) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
1) x≥-2
x-2≥0
3*√(x+2) = 6 - x + 2
Решаем первую систему:
x≥-2
x≥2
3*√(x+2) = 8 - x - возведем обе части уравнения в квадрат, т.к справа будет положительное число
x≥2
9(x+2) = 64 - 16x + x^2
x^2 - 16x + 64 - 9x - 18 = 0
x^2 - 25x + 46 = 0, D = 441 = 21^2
x1 = (25 - 21)/2 = 4/2 = 2
x2 = (25 + 21)/2 = 46/2 = 23
Оба решения удовлетворяют ОДЗ и интервалу системы.
2) -2≤x<2
3*√(x+2) = 6 - (2 - x) = 4 - x - возведем обе части в квадрат, справа положит.число
9(x+2) = 16 - 8x + x^2
x^2 - 8x + 16 - 9x - 18 = 0
x^2 - 17x - 2 = 0
D = 297
x3 = (17 - √297)/2 ≈ -0.12
x4 = (17 + √297)/2 ≈ 17.11 - не удовлетворяет интервалу системы.
ответ: 2, 23, (17 - √297)/2