М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
watercolour3
watercolour3
13.09.2020 16:28 •  Алгебра

Впримере на сложение цифры заменили буквами(причём одинаковыми буквами,а разные цифры-разными буквами) и получили: булок+было=много.сколько же было булок? их количество есть максимальное возможное значение числа много

👇
Ответ:
dimasik337
dimasik337
13.09.2020
В примере на сложение цифры заменили буквами (причем одинаковые цифры – одинаковыми буквами, а разные цифры – разными буквами) и получили: БУЛОК + БЫЛО = МНОГО. Сколько же было булок? Их количество есть максимальное возможное значение числа МНОГО. 

ответ: 95343
4,6(37 оценок)
Открыть все ответы
Ответ:
fhdhjdh
fhdhjdh
13.09.2020
О РЕШЕНИИ ТРЕУГОЛЬНИКОВ.

X. Косоугольные треугольники.

§ 97. Соотношения между элементами косоугольного треугольника.

Начнем с геометрического соотношения между углами треугольника:

А + В + С = 180°.

Заметим некоторые следствия из него.

а) Так как сумма значений А и В + С равна 180°, то синусы их равны, а косинусы различаются знаками; поэтому
sin (B + C) = sin A; cos (B+C)= — cos A; cos A = — cos {В + С).

Точно так же:

tg ( B+ C ) = — tg A.

б) Так как сумма значений и равна 90°, то сходные функции их соответственно равны (§ 17); например:

sin = cos ; sin = cos и т. д.

в) Полезно запомнить еще следующие соотношения между угламя треугольника:

l) sin A + sin B + sin С = 4 cos • cos • cos

2) tg A + tg B+ tg C = tg A • tg B • tg C;

3) ctg + ctg + ctg = ctg • ctg • ctg .

Вывод этих формул предоставляется учащемуся.

§ 98. Лемма. Во всяким треугольнике сторона равна диаметру описанного круга, умноженному на синус противолежащего угла.

Обозначая радиус описанного круга через R, докажем, например, что а = 2R • sin A, где угол А есть острый или тупой.

Доказательство. 1) Угол А острый (черт. 41). В oписанном круге из конца данной стороны проведем диаметр и соединим другие концы этой стороны и диаметра; получим прямоугольный треугольник. На чертеже 41 таким треугольником будет BDC; из него, на основании § 21, находим: BC = BD • sin D, или a = 2R• sin D; нo / D = / А1); следовательно, a = 2R• sin A.
1) Тот и другой измеряются половиной дуги ВС.

2) Угол А тупой. Сделаем такое же вс построение, как раньше. Из прямоугольного треугольника ВСЕ (черт. 42) найдем: a = 2R• sin E; но Е + А = 180°, следовательно sin E = sin A, поэтому a = 2R• sin A. Итак, вообще:

a = 2R• sin A; b = 2R• sin B; c = 2R• sin C.

§ 99. Теорема. Во всяком треугольнике стороны пропорциональны синусам противолежащих углов.

Требуется доказать, что:

a/sin A = b/sin B = c/sin C

Доказательство. По § 98 для всякого треугольника как остроугольного, так и тупоугольного имеем:

a = 2R• sin A; b = 2R• sin B; c = 2R• sin C.

Отсюда находим:

2R = a/sin A ; 2R = b/sin B ; 2R = c/sin C ,

следовательно:

a/sin A = b/sin B = c/sin C = 2R.

Таким образом, для одного и того же треугольника частное от деления стороны на синус противолежащего угла есть величина постоянная, равная диаметру описанного круга.

Из соотношения a/sin A = b/sin B = c/sin C , переставляя члены пропорции, получим:

a : b : c = sin A : sin B : sin С,

т. е. во всяком треугольнике стороны, относятся между собой, как синусы противолежащих углов.

Пример. Определить a : b : c, если А : В : С= 3 : 4 : 5.

Так как А + В + С =180°, то сначала разделим 180° в отношении 3 : 4 : 5; получим
А = 45°, B = 60° и С = 75°. Теперь по доказанному будем иметь:

a : b : c = sin 45° : sin 60° : sin 75°.

Подставляя сюда _ _

sin 45° = √2/2, sin 60° = √3/2 и sin 75° = cos 30°/2= 1/2

получим, освободясь от знаменателей:

a : b : c = √2 : √3 : .

§ 100. Теорема. Сумма двух сторон треугольника так относится к их разности, как тангенс полусуммы противолежащих углов относится к тангенсу полуразности тех же углов.

Доказательство. По §98 находим:

a + b = 2R {sin A + sin В) и а — b = 2R (sin A — sin В);

отсюда:

Применяя здесь ко второй части формулу (XVII) (§ 65), получим:

( a + b ) : (а — b ) = tg : tg ,

чем и выражается теорема.

§ 101. Формулы Мольвейде. Так называются следующие две пропорции, которые содержат отношения суммы и разности двух сторон треугольника к третьей стороне:

Доказательство. 1) По §98:

a + b = 2R (sin A + sin B) и c = 2R • sin C;

отсюда

Преобразуем вторую часть:

но sin = cos , так как + == 90°. По сокращении же дроби (b) будет окончательно:

2) Таким же образом получим:

§ 102. Теорема. Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения их на косинус угла между ними.

Требуется доказать, что а2 = b2 + с2 — 2bс • соs A (одинаково и в случае острого и в случае тупого;

Доказательство. 1) Если угол А острый, то на основании теоремы геометрии о квадрате стороны, лежащей против острого угла, имеем (черт. 43):

а2 = b2 + с2 — 2b • AD,

но из прямоугольного треугольника ABD можно заменить AD через с • cos A; тогда получим:

а2 = b2 + с2 — 2bс • соs A.

2) Если угол A тупой, то применяем теорему о квадрате стороны против тупого угла треугольника (черт. 44). Получаем

а2 = b2 + с2 + 2b • AE.

Из треугольника ABC находим:

AE = с • соs α,

но так как

α = / BAE = 180° — А,

то

cos α = cos (180° — А) = — cos A,

поэтому

АЕ = — с • cos A.

Подставляя это выражение в геометрическую формулу, получим:

а2 = b2 + с2 — 2bс • соs A,

т, е. то же самое, что и в первом случае.
4,4(48 оценок)
Ответ:
misspsix123
misspsix123
13.09.2020
Task/28555810 решите тригонометрическое уравнение  2cosx + |cosx|=2sin2x*sin(π/6)      решение:     2cosx  +  |cosx|=sin2x        * * * sin( π/6) =1/2 * * *   2cosx  +  |cosx|=2sinxcosx                  * * *    sin2x = 2sinxcosx * * * а)  cosx < 0cosx  = 2sinxcosx  ;                                 * * * |cosx| = - cosx * * * 2cosx(sinx -1/2) = 0  ; sinx =1/2 ; x =(π-π/6)+2πk ,k  ∈  ℤ x =5π/6 +2πk ,k  ∈  ℤ . б)  cosx=0  x = π/2 +πn ,  n  ∈  ℤ в)  cosx > 0                * * * |cosx| = -  cosx * * * 3cosx  =  2sinxcosx ; 2cosx(sinx -3/2) =0    ⇒   x  ∈ ∅ .    * * * sinx ≠ 3/2 > 1 * * * ответ:     5π/6 +2πk ,  π/2 +πn            k,n ∈  ℤ .  
4,4(65 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ