нехай перший рухався зі швидкістю х км/год, а другий у км/год. тоді перший пройшов до зустрічі 3х км, а другий 3у км., а разом 3х+3у=27 км за умовою перший прийшов на 1 год 21 хв=1,35 год раніше. тому 27/у-27/х=1,35 складемо систему рівнянь [latex] \left \{ {3x+3y=27} \atop {27/y-27/x=1.35}} \right. [/latex] виразимо в першому рівнянні х через у х=9-у підставимо в друге рівняння 20х-20у=ху . маємо: 180-20у-20у=9у-у² у²-49у+180=0 d=1681 y1=(49+41)/2=45 y2=4 тоді x1=9-45=-36 , що не задов умові і х2=9-4=5 км/год швидкість першого пішохода 5 км/год, а другого 4 км/год
(-6(1-3x)(2-7x)^5+35(1-3x)²(2-7x)^4)/(2-7x)^10=
(1-3x)(2-7x)^4(-6(2-7x)+35(1-3x))/(2-7x)^10=
(1-3x)(-12+42x+35-105x)/(2-7x)^6=
(1-3x)(23-63x)/(2-7x)^6≤0
x=1/3 , x=23/63 , x=3,5
+ _ + +
1/3 23/63 3,5
x∈[1/3;23/63]