Решение системы уравнений a=24,2
t=4,8
Объяснение:
Решить систему уравнений алгебраического сложения.
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на -3:
a−4t=5
3a−7t=39
-3а+12t= -15
3a-7t=39
Складываем уравнения:
-3а+3а+12t-7t= -15+39
5t=24
t=24/5
t=4,8
Теперь подставляем значение t в любое из двух уравнений системы и вычисляем а:
a−4t=5
а=5+4t
a=5+4*4,8
a=24,2
Решение системы уравнений a=24,2
t=4,8
1) Вычислим длины сторон:
|BC| =√(x C −x B ) ^2 +(y C −y B ) ^2 =√(6−(−1))^ 2 +(21-(−3)) ^2 =√7 ^2 +24^ 2 =√49+576 =√625=√25.2) Составим уравнения сторон:
BC: x−xB/xC−xB=y−yB/yC−yB ⇔ x−(−1)6−(−1)=y−(−3)21−(−3) ⇔ x+17=y+324 ⇔ 24x−7y+3=0.6) Вычислим площадь треугольника:
S =1/2 |(x B −x A )(y C −y A )−(x C −x A )(y B −y A )∣ =1/2 ∣(−1−15)(21−9)−(6−15)(−3−9)∣=1/2 ∣(−16)⋅12−(−9)⋅(−12)∣ =12 ∣ −192−108∣=|−300|/2 =300/2 =150.10) Составим уравнения медиан:
AA1 : x−x A /x A 1 −x A =y−y A /y A 1 −y A ⇔ x−152.5−15 =y−99−9 ⇔ x−15−12.5 =y−90 ⇔ y−9=0.14) Составим уравнения высот:
AA 2 : x−x A /y C −y B =y−y A /x B −x C ⇔ x−1521−(−3) =y−9−1−6 ⇔ x−1524 =y−9−7 ⇔ 7x+24y−321=0;
ответ: 9 и 12