Функция задана прямой пропорцирнальностью, а это значит, что графиком есть прямая. Для построения прямой достаточно двух точек. Выберем любые значения аргумента (х) и найдем соответствующие им значения функции, тоесть у. 1). х=0, тогда у=2*0-4=0-4=-4, имеем точку А(0; -4); 2) х=2, тогда у= 2*2-4=4-4=0, координаты второй точки В(2;0). Находим на координатной плоскости точки А и В. Соединяем их с линейки. Точка А расположена на оси оу на 4единицы вниз от начало координат, точка В расположена на оси оу на 2 единицы вправо от начало координат. Функция принимает положительные значения, когда значения аргумента больше 2 (на графике - прямая над осью ох), то есть х є (2; ∞).
= -1/4*cos 4x - |u=x, dv=sin 4x dx, du=dx, v=-1/4*cos 4x| +
+ |u=x^2, dv=sin 4x dx, du=2x dx, v=-1/4*cos 4x| =
= -1/4*cos 4x + x/4*cos 4x - 1/4*Int cos 4x dx -- x^2/2*cos 4x + Int x*cos 4x dx =
= -1/4*cos 4x + x/4*cos 4x - 1/16*sin 4x - x^2/2*cos 4x +
+ |u=x, dv=cos 4x dx, du=dx, v=1/4*sin 4x| =
= -1/4*cos 4x + x/4*cos 4x - 1/16*sin 4x - x^2/2*cos 4x +
+ x/4*sin 4x - 1/4*Int sin 4x dx =
= -1/4*cos 4x + x/4*cos 4x - 1/16*sin 4x - x^2/2*cos 4x +
+ x/4*sin 4x + 1/16*cos 4x + C