ответ
а) -3х2 (-х3 + х - 5) = 3х2 • х3 - 3х2 • x + 3х2 • 5 = 3х5 - 3х3 + 15х2;
б) (1 + 2а - а2) • 5а = 1 • 5a + 2a • 5a - а2 • 5a = 5a + 10а2 - 5a3;
в) 2/3 x2y(15x - 0,9y + 6) = 2/3x2y • 15x - 2/3x2y • 0,9у + 2/3x2y • 6 = 10x3y - 0,6x2y2 + 4х2y;
г) 3а4x(а2 - 2ах + х3 - 1) = За4х • а2 - За4х • 2ах + + За4х • х3 - За4х • 1 = За6х - 6а5х2 + За4х4 - За4х;
д) (х2у - ху + ху2 + у3) • Зху2 = х2у • Зху2 - ху • Зху2 + ху2 • Зху2 + y3 • Зху2 = Зx3y3 - Зx3y3 + Зх2у4 + Зху5;
е) -3/7а4(2,1b2 - 0,7а + 35) = -3/7а4 • 2,1b2 + 3/7а4 • 0,7а - 3/7а4 • 35 = -0,9а4b2 + 0,3а5 - 15а4.
условно сходится
Объяснение:
Для выяснения сходимости ряда используем признак Лейбница.
Очевидно, что
1. , так как с увеличением номера n увеличивается знаменатель, а с ростом знаменателя дробь становится все меньше и меньше;
2.
Надеюсь, данный факт ясен.
Два условия выполнены, следовательно, ряд по признаку Лейбница сходится.
Выясним вопрос относительно абсолютной сходимости. Для этого нужно рассмотреть соответствующий ряд из модулей исходного ряда.
Напомню, что модуль "съедает" множитель вида . Значит, общий член нового ряда имеет вид
.
Для установления сходимости данного ряда используем интегральный признак Коши. Это можно сделать, поскольку действительнозначная функция
неотрицательна, непрерывна и убывает на интервале
Можно рассмотреть несобственный интеграл. Исследуем его на сходимость. подробности в приложенном файле.
Итак, получена бесконечность, стало быть, несобственный интеграл расходится.
Ряд сходится либо расходится вместе с несобственным интегралом. То есть, расходится.
Таким образом, сам ряд сходится. Но ряд из модулей расходится, что исключает абсолютную сходимость ряда. А сходящийся ряд, не сходящийся абсолютно, сходится условно.
значит так... разложтм методом группировки на две скобки, получим: (20а^3+5a^2b)-(6b^2+24ab)=5a^2(4a+b)-6b(b+4a)=(4a+b)(5a^2-6b) все)))