Рассмотрение математических задач, решавшихся в Древнем Египте и Вавилоне, показывает, что еще в глубокой древности возникли некоторые приемы приближенных вычислений. Под влиянием запросов техники в настоящее время разработаны разные методы приближенных вычислений.
Большие заслуги в развитии теории приближенных вычислений имеет академик Алексей Николаевич Крылов (1863 - 1945). Он в 1942 году писал: «Во всех справочниках, как русских, так и иностранных, рекомендуемые приемы численных вычислений могут служить образцом, как эти вычисления делать не надо… вычисление должно производиться с той степенью точности, которая необходима для практики, причем всякая неверная цифра составляет ошибку, а всякая лишняя цифра – половину ошибки».
Рассмотрение математических задач, решавшихся в Древнем Египте и Вавилоне, показывает, что еще в глубокой древности возникли некоторые приемы приближенных вычислений. Под влиянием запросов техники в настоящее время разработаны разные методы приближенных вычислений.
Большие заслуги в развитии теории приближенных вычислений имеет академик Алексей Николаевич Крылов (1863 - 1945). Он в 1942 году писал: «Во всех справочниках, как русских, так и иностранных, рекомендуемые приемы численных вычислений могут служить образцом, как эти вычисления делать не надо… вычисление должно производиться с той степенью точности, которая необходима для практики, причем всякая неверная цифра составляет ошибку, а всякая лишняя цифра – половину ошибки».
а) (3x+12)(x^2-2x)=0
3x=-12 x(x-2)=0
x=-4 x=0 x=2
ответ: (-бесконечность;-4) (0;2)
б) ) (x^2-25)(x^2-9)=0
x=+-5 x=+-3
ответ: (-5;-3) (3;5)
Если не понятно, откуда ответы - чертишь ось Х, ставишь ответы на них и смотришь методом интервалов.