Сумма разность квадратов 2 последовательных натуральных чисел и разности квадратов двух последовательных натуреальный чисел равна 38 . найдите эти числа если разности квадратов не отрицательны
Если точка Р(1;0) повернётся на угол 90° против часовой стрелки, то она перейдёт в точку с координатами Р₁(0,1). И если поворот будет по часовой стрелке, то точка будет Р₂(0,-1). Если точку Р(1;0) повернуть на 180° против часовой стрелки, то она перейдёт в точку Р₃(-1;0). Если поворот будет по часовой стрелке, то получим ту же точку Р₃(-1;0). Если точку Р(1;0) повернуть на 270° против часовой стрелки, то она перейдёт в точку Р₄(0;-1). Если поворот будет по часовой стрелке, то получим точку Р₅(0;1).
Пусть х учеников изучают только английский, у - только французский и z - и английский, и французски. Получаем, что ангийский изучают (х+z) учеников, а французский (y+z). Получаем систему из двух уравнений с тремя неизвестными. (x+z)/5=z (y+z)/7=z Отуда получаем x+z=5z y+z=7z
x=4z y=6z Всего в классе учеников x+y+z=4z+6z+z=11z z - натуральное число Так как в классе занято более 30 мест, то 11z>30 Так как в классе 20 двухместных парт, то 11z≤40 Получаем 30 <11z≤40 30/11 < z≤ 40/11 2,7 < z ≤ 3,6 z=3 В классе 33 ученика, 12 из них изучают только английский, 18 -только французский и 3 изучают оба языка
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 38.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=38
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=38
2n+1+2n+5=38
4n=32
n=8
8; 9 и 10;11
(11²-10²)+(9²-8²)=21+17
21+17=38 - верно