М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Dog2111
Dog2111
27.01.2023 16:03 •  Алгебра

За 4 часа езды на автомашине и 7 часов езды на поезде туристы проехали 640 км. какова скорость поезда, если она на 5 км/ч больше скорости автомашины? (решение с системы уравнений.)

👇
Ответ:
orynbasar2001
orynbasar2001
27.01.2023
X-скорость автомашины
у-скорость поезда
4х+7у=640        4х+7у=640       4х+7у=640             
у-х=5                -х+у=5             -4х+4у=20    *4
11х=660
х=60        у=65
ответ: 60 км/ч скорость автомобиля, а скорость поезда 65км/ч
4,8(44 оценок)
Открыть все ответы
Ответ:
В подобных задачах обычно используется теорема Пифагора и синусы, косинусы, тангенсы острых углов.

Теорема Пифагора может пригодится, если известно две стороны из трёх.
a² = b² + c²
a - гипотенуза; b, c - катеты.

Теперь остановимся на острых углах.

1) Один острый угол равен 45°. В таких задачах прямоугольный треугольник ещё и равнобедренный ⇒ равны катеты.

2) Один из острых углов равен 30° (60°). Есть одна теорема: напротив угла в 30° лежит катет в два раза меньше гипотенузы. Для большей наглядности возьмём треугольник ABC (∠C - прямой). Пусть ∠А = 30°, тогда AB (гипотенуза) = 2*BC (катет, напротив 30°)

3) Обычно острые углы в прямоугольном треугольнике либо равны 30°, 45°, 60°, либо даны синусы, косинусы, тангенсы этих углов ( например, tgA = 2)
В таких случаях надо выражать тангенс, синус или косинус через стороны.

Например в треугольнике ABC (∠C - прямой) BC = 14, а tgA = 2. Нужно найти AC.
Тангенс - отношение противолежащего катета к прилежащему, то есть tgA = BC : AC, подставив значения, находим AC = 7.

Приведу второй пример. Треугольник ABC (∠C - прямой), ∠A = 30°, AB = 8. Найти BC. Такую задачу можно решить по теореме, указанной выше под цифрой 2, или выразив сторону BC через синус.
Синус - отношение противолежащего катета к гипотенузе, то есть sinA = BC : AB. sinA = sin30° = 1/2. Подставив значения, находим BC = 4.
4,7(37 оценок)
Ответ:
SilverSalt
SilverSalt
27.01.2023
В подобных задачах обычно используется теорема Пифагора и синусы, косинусы, тангенсы острых углов.

Теорема Пифагора может пригодится, если известно две стороны из трёх.
a² = b² + c²
a - гипотенуза; b, c - катеты.

Теперь остановимся на острых углах.

1) Один острый угол равен 45°. В таких задачах прямоугольный треугольник ещё и равнобедренный ⇒ равны катеты.

2) Один из острых углов равен 30° (60°). Есть одна теорема: напротив угла в 30° лежит катет в два раза меньше гипотенузы. Для большей наглядности возьмём треугольник ABC (∠C - прямой). Пусть ∠А = 30°, тогда AB (гипотенуза) = 2*BC (катет, напротив 30°)

3) Обычно острые углы в прямоугольном треугольнике либо равны 30°, 45°, 60°, либо даны синусы, косинусы, тангенсы этих углов ( например, tgA = 2)
В таких случаях надо выражать тангенс, синус или косинус через стороны.

Например в треугольнике ABC (∠C - прямой) BC = 14, а tgA = 2. Нужно найти AC.
Тангенс - отношение противолежащего катета к прилежащему, то есть tgA = BC : AC, подставив значения, находим AC = 7.

Приведу второй пример. Треугольник ABC (∠C - прямой), ∠A = 30°, AB = 8. Найти BC. Такую задачу можно решить по теореме, указанной выше под цифрой 2, или выразив сторону BC через синус.
Синус - отношение противолежащего катета к гипотенузе, то есть sinA = BC : AB. sinA = sin30° = 1/2. Подставив значения, находим BC = 4.
4,5(86 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ