ответ: V1=24 км/ч, V2= 40 км/ч.
Объяснение:
Пусть скорость второго равна х км/ч.
Тогда первого будет х+16 км/ч.
Первый затратит на путь в 120 км - 120/(х+16) часов,
А второй - 120/х часов.
Разность во времени 2 часа.
Составим уравнение:
120/х - 120/(х+16)=2;
Найдем общий знаменатель: х(х+16), дополнительные множители:
(х+16, х и х(х+16)) .
120(х+16)-120х=2х(х+16);
120х+1920-120х=2х²+32х;
2х²+32х-1920=0; [:2]
x²+16x-960=0;
По теореме Виета
х1+х2=-16; х1*х2=960;
х1=24; х2= -40 - не соответствует условию задачи.
V2=24 км/ч - скорость второго мотоциклиста.
V1=x+16=24+16=40 км /ч
пусть х-скорость первого насоса, у-второго
5x+10(x+y)=15x+10y-объем цистерны
(15x+10y)/x-время наполнения цистерны первым насосом
(15х+10у)/y-вторым
найду выражение х через у
(15x+10y)/x=(15x+10y)/y+10-заполнение цистерны первым на 10 часов больше чем вторым
15+10y/x=15x/y+10+10
обозначу y/x=t
15+10t=15/t+20
10t-15/t-5=0
10t^2-5t-15=0
2t^2-t-3=0
D=1+24=25
t=(1+5)/4=1.5
y/x=1.5
y=1.5x
В задаче спрашивается за сколько времени цистерна наполнится обоими насосами, то есть надо найти (15x+10y)/(x+y)
подставлю выражение у через х
(15x+10*1.5x)/(x+1.5x)=30x/(2.5x)=12
ответ: цистерна наполнится обоими насосами при одновременной их работе за 12 часов
ответ: 1