Ну, наччнем с того, что предположим, что сутки у них одинаковы по длительности и сутки состоят из целого числа часов, часы состоят из целого числа минут, минуты состоят из целого числа секунд.
Значит надо искать сомножители 715 - узнать вообще на сколько равных целых кусочков можно разделить это число: 715=5*11*13 получается, что возможны такие варианты: 715 минут - это 1) 5 суток по 11 часов, в каждом часе 13 минут 2) 5 суток по 13 часов, в каждом часе 11 минут 3) 11 суток по 5 часов, в каждом часе 13 минут 4) 11 суток по 13 часов, в каждом часе 5 минут 5) 13 суток по 5 часов, в каждом часе 11 минут 6)13 суток по 11 часов, в каждом часе 5 минут
по условию "минут в часе меньше, чем часов в сутках" - значит варианты 1, 3 и 5 не верны,
в оставшихся вариантах умножим часы на минуты - узнаем, сколько минут в сутках: на это число должно нацело делиться суточное к-во секунд - известные нам 1001:
5 суток по 13 часов, в каждом часе 11 минут - 143 минуты в сутках
11 суток по 13 часов, в каждом часе 5 минут - 65 минут в сутках
13 суток по 11 часов, в каждом часе 5 минут 55 минут в сутках
разложим на множители 1001 1001=7*11*13
вот они, знакомые 11*13 = 143 Получается, что только первый вариант имеет такие числа, чтобы суточное количество секунд нацело делилось на суточное к-во минут!
Итак, на планете Шелепука неделя состоит из 5 суток, сутки состоят из 13 часов, час состоит из 11 минут, минута состоит из 1001/143 = 7 секунд!
- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)