1) Если принять за Х количество дней за которые планировалось изготовить все детали (изготавливая по 20 дет. в день), то количество деталей можно выразить как 20Х. Каждый день рабочий фактически делал не 20, а 20+8=28 деталей и изготовил (20Х+8) деталей за (Х-2) дня. Поэтому можно записать уравнением:
28(Х-2)=20Х+8
28Х-20Х=8+56
Х=64/8=8
Задание рабочий должен был выполнить за 8 дней (при этом изготовить 20*8=160 деталей, изготавливая по 28 дет. в день за 8-2=6 дней он сделал 28*6=168 деталей, т.е. на 8 больше).
2) Аналогичная задача: по 10 зад. в день нужно делать Х дней, всего задач будет 10Х. Если делать по 10+4=14 задач за Х-3 дня то нужно еще сделать 2 задачи, чтобы стало 10Х, уравнение принимает вид:
14(Х-3)+2=10Х
14Х-10Х=42-2
Х=40/4=10
Если решать 10 дней по 10 задач, то всего нужно решить 10*10=100 задач. (Если решать по 14 задач 10-3=7 дней, то останется решить 2 задачи: 14*7=98 зад., 100-98=2 зад.).
3) Если представить условно двузначное число в виде цифр (ав), то его можно математически выразить в форме а*10+в. Обратное выражение (ва) - это в*10+а. Известно, что соблюдаются два условия:
(а*10+в) - 54= в*10+а и а=3в, решаем данную систему уравнений, подставив второе выражение в первое.
3в*10+в-54=10в+3в
в=54/18=3
а=3в=3*3=9,
ответ: двузначное число - это 93
372.
х и (х+1) - последовательные натуральные числа
Найти:
а) х*(х+1)=156
x²+x=156
x²+x-156=0
x₁+x₂=-1
x₁*x₂=-156
x₁=-13 - не соответствует условию (-13<0)
x₂=12
x+1=12+1=13
ответ: 12; 13
б) x*(x+1)=210
x²+x=210
x²+x-210=0
D=1²-4*(-210)=841 √841=29
x₁=(-1+29)/2=14
x₂=(-1-29)/2=-15 - несоответствует условию (-15<0)
x=14
(x+1`)=15
ответ: 14;15
373. х и (х+2) - последовательные нечетные числа
Найти:
а) х*(х+2)=225
x²+2x=225
x²+2x-225=0
D=2²-4*(-225)=904 √≈30.07
x₁=(-2+30.07)/2=14.035
x₂=(-2-30.07)/2=-16.035
В условии данной задачи дорущена опечатка, искажающая результат решения. Я думаю, что задание должно звучать так:
а) х*(х+2)=255
x²+2x=255
x₂+2x-255=0
x₁+x₂=-2
x₁*x₂=255
x₁=-17
x₂=15
x=-17 => (x+2)=-15
x=15 => (x+2)=17
ответ: 1 пара: -15; -17
2 пара: 15; 17
б) х*(х+2)=399
x²2x=399
x²+2x-399=0
D=2²-4(-399)=1600 √1600=40
x₁=(-2+40)/2=19
x₂=(-2-40)/2=-21
x=19 => (x=2)=21
x=-21 => (x+2)=-19
ответ: 1 пара: 19;21
2 пара: -19;-21
381. Дано: Полоска, отрезанная от листа,: ширина=6 см, длина=х
Площадь оставшейся части листа = 135 см²
Найти: изначальная площадь квадратного листа, со стороной х
S(полоска)=6*х см²
Длина оставшейся части=х см
S(квадрата)=х² см²
x²=135+6x
х²-6х-135=0
D=(-6)²-4*(-135)=576 √576=24
x₁=(6+24)/2=15
x₂=(6-24)/2=-9 - сторонний корень
х=15 см
ответ: S=15²=225 см²
Проверка: 15²-6*15-135=225-90-135=135-135=0
382.
v км/ч- скорость скорого поезда
(v-20) км/ч - скорость товарного поезда
t=400/v ч - время в пути скорого поезда
t=400/(v-20) ч - время в пути товарного поезда
400/(v-20) > 400/v
400/(v-20)-400/v=1
400v-400v+8000=v²-20v
-v²+20v+8000=0
v²-20v-8000=0
D=(-20)²-4*(-8000)=32400 √32400=180
v₁=(20+180)/2=100
v₂=(20-180)/2=-80 - сторонний корень
v=100
v-20=100-20=80
ответ: скорый поезд 100 км/ч, товарный поезд 80 км/ч
Проверка: 400/(100-20)-400/100=5-4=1
384.
S (в одну сторону)=35 км
v(течение)=3 км/ч
t(путешествие)=7 ч
t(стояника)=3 ч
t(в пути)=7-3=4 ч
v+3 км/ч - скорость катера по течению
v-3 км/ч - скорость катера против течения
Найти: v км/ч- собственно скорость катера
35/(v+3)+35/(v-3)=4
35v-105+35v+105=4(v+3)(v-3)
70v=4v²-36
-4v²+70v+36=0
4v²-70v-36=0
D=(-70)²-4*4*(-36)=5476 √5476=74
v₁=(70+74)/2*4=18 км/ч
v₂=(70-74)<0 - сторонний корень
ответ: скорость катера в стоячей воде = 18 км/ч
Проверка: 35/(18+3)+35/(18-3)=1 2/3+2 1/3=4
386.
S=90 км
S/2=90/2=45 км - половина пути
v км/ч - скорость на 2-ой половине пути
v+3 - км,ч - скорость на 1-ой половине пути
t=5.5 ч
45/(v+3)+45/v=5.5
45v+45v+135=5.5v²+16.5v
90v-5.5v²-16.5v+135=0
5.5v²-73.5v-135=0
D=(-73.5)²-4*5.5*(-135)=5402.25+2970=8372.25 √8372.25=91.5
v₁=(73.5+91.5)/2*5.5=165/11=15 км/ч
v₂=(73.5-91.5)<0 - сторонний корень
ответ: Скорость второй половины пути = 15 км/ч
Проверка: 45/(15+3)+45/15=2.5+3=5.5