Получаем 4 неравенства: 1) |x|>0 |x-1|>0 (x-2)(x-3)<=0; x1=2; x2=3; используя метод интервалов находим: x=[2;3] 2) |x|<0 |x-1|>0 (-x-2)(x-3)<=0; x1=-2; x2=3 используем тот же метод: x=(-беск;-2] и [3;+беск) 3) |x|>0 |x-1|<0 (x-2)(-x-1)<=0; x1=2; x2=-1; методом интервалов находим: x=(-беск;-1] и [2;+беск) 4) |x|<0 |x-1|<0 (-x-2)(-x-1)<=0; x1=-2; x2=-1 используем метод интервалов: x=[-2;-1] теперь обьеденим эти множетва и получим: x=[-2;-1] и [2;3] ответ: x принадлежит [-2;-1] и [2;3]
ответ:Объяснение:Предположим, что клетки квадрата n × n удалось раскрасить таким образом, что для любой клетки с какой-то стороны от неё нет клетки одного с ней цвета. Рассмотрим тогда все клетки одного цвета и в каждой из них нарисуем стрелочку в том из четырёх направлений, в котором клетки того же цвета нет. Тогда на каждую клетку «каёмки» нашего квадрата будет указывать не более одной стрелки. Так как клеток каёмки всего 4n – 4, то и клеток каждого цвета не более 4n – 4. С другой стороны, каждая из n² клеток нашего квадрата раскрашена в один из четырёх цветов, то есть n² ≤ 4(4n – 4). Для решения задачи теперь достаточно заметить, что последнее неравенство неверно при n = 50. Несложно убедиться, что оно неверно при всех n ≥ 15, и, следовательно, утверждение задачи верно уже в квадрате 15 × 15 — а заодно и в любом большем квадрате.
2)4,7*10⁻¹°°;
3)2,9*10¹°° ; это число наибольшее, так как показатель степени наибольший
4)9,5*10⁵⁰