log1/22(22x-2)≥0
22x-2≥1 22x-2>0
22x≥3 x>2/22
x≥3/22 x>1/11
x∈(1/11;3/22]
log1/2(5x-8)>1
5x-8>1/2 5x-8>0
5x>8.5 x>8/5
x>1.7 x>1.6
x∈(1.6;1.7)
log24x+log24(x-23)<1 x>0
log24x(x-23)<1 x-23>0
x²-23x<24 x>23
x²-23x-24<0
D=529+96=625
x₁,₂=23±25/2=24;-1
x∈(-1;23)
Всё решается очень просто. Самое главное правильно сгруппировать слагаемые:
sinx+sin2x+sin3x=0
(sinx+sin3x)+sin2x=0
То выражение, что получилось в скобках раскладывается на множители по известной формуле:
sin a+sin b=2*sin (a+b)/2*cos(a-b)/2, поэтому (так как преобразования простые, то некоторые действия пропускаю)
2*sin2х*cosх+sin2x=0
sin2x(2cosx+1)=0
Осталось решить два простых тригонометрических уравнения:
sin2x=0 и cosx=-1/2
Первое уравнение решается просто: х=pi*n/2
Второе уравнение решается по формуле тригонометрии:
cosx=a, x=(+-)arccosa+2*pi*n
pi-это знаменитое число 3,14159
n-любое целое число
Вот и всё решение.