В решении.
Объяснение:
Школьники занимаются прополкой огорода, который находится на пришкольном участке. Работают они с разной скоростью, а некоторые из них, как показывает практика, даже мешают общей работе, просто закапывая сорняки или перебрасывая их на участок соседа...
Вчерашняя работа показала, что Петя и Алина выпалывают гряду за 7 мин, Алина и Николай выпалывают её же за 14 мин, Николай и Петя — за 28 мин.
За сколько минут выполнят эту работу все вместе?
1 - гряда (условный объём работы).
1/7 - производительность Пети и Алины (часть гряды в минуту).
1/14 - производительность Николая и Алины (часть гряды в минуту).
1/28 - производительность Николая и Пети (часть гряды в минуту).
П + А + Н + А + Н + П = 1/7 + 1/14 + 1/28
2(П + А + Н) = 1/4
Сократить (разделить) обе части уравнения на 2:
(П + А + Н) = 1/8 - общая производительность трёх школьников.
1 : 1/8 = 8 (минут). ответ задачи.
y = x³ - 3x² + 3x - 2,5
Найдём производную :
y' = (x³)' - 3(x²)' + 3(x)' - 2,5' = 3x² - 6x + 3
Приравняем производную к нулю, найдём критические точки :
3x² - 6x + 3 = 0
x² - 2x + 1 = 0
(x - 1)² = 0 ⇒ x = 1
Эта критическая точка принадлежит заданному отрезку. Найдём значения функции в критической точке и на концах отрезка и выберем из них наибольшее .
y(1) = 1³ - 3 * 1² + 3 * 1 - 2,5 = 1 - 3 + 3 - 2,5 = - 1,5
y(- 1) = (-1)³ - 3 * (- 1)² + 3 * (- 1) - 2,5 = - 1 - 3 - 3 - 2,5 = - 9,5
y(2) = 2³ - 3 * 2² + 3 * 2 - 2,5 = 8 - 12 + 6 - 2,5 = - 0,5
ответ : наибольшее значение функции равно - 0,5
Про логарифмируем обе части