X²+4=-x²+2x+4 x²+x²-2x+4-4=0 2x²-2x=0 2x(x-1)=0 x1=0 x2=1 Мы нашли пределы интегрирования, теперь берем определенный интеграл от 0 до 1 от функции
x²- 2x³/3 подставляем наши пределы 1²-(2*1³/3)-(0²-2*0³/3)= 1-2/3= 1/3 Площадь фигуры равна 1/3! Нарисуй графики и убедишься что площадь меньше одной клеточки.
Скорость тела = первая производная расстояния по времени = 24т - 6т^2 ускорение = вторая производная = 24 - 12т ускорение равно 0 в момент времени т=2, значит скорость в этот момент максимальна.
скорость в в момент (т=2) равна 24*2 - 6*2*2=24 ответ: 24. ... второе честно не знаю. 3) Здесь имеем S = 2 * a^2 + 4 * a * h; V = a^2 * h. Из S получим h = 150 / a - a / 2. Подставим h в V: V = 150*a - a^3/2. При максимальном V производная этой функции равна 0. V' = 150 - 3 * a^2 / 2, a = 10. Теперь найдём h
(150 / 10 - 10 / 2 ) = 10, т. е. a = h, а параллелепипед - куб.
Найти корень уравнения , если их несколько, то указать сумму.
Сразу вернёмся к формуле, по которой собственно и находятся корни квадратного уравнения (уравнения вида ): , дискриминант же расписывается по-своему: . Дискриминант как бы заслужил своё отдельное внимание, ведь именно при его вычислении люди нередко допускают ошибки. Теперь – решаем
, отсюда: , значит
мы получили ; это как в алгебраических выражений седьмого класса – ты складываешь буквы, подставляешь вместо них какие-то числа и считываешь ответ, так вот здесь тоже самое
возвращаемся к формуле корней квадратного уравнения:
оба корни действительны и являются решением данного уравнения, а теперь моё мини-задание:
x²+x²-2x+4-4=0
2x²-2x=0
2x(x-1)=0
x1=0
x2=1
Мы нашли пределы интегрирования, теперь берем определенный интеграл от 0 до 1 от функции
x²- 2x³/3 подставляем наши пределы 1²-(2*1³/3)-(0²-2*0³/3)= 1-2/3= 1/3
Площадь фигуры равна 1/3! Нарисуй графики и убедишься что площадь меньше одной клеточки.