Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
Пусть Х-производительность 1-го, У-производительность 2-го.
Система:
х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5
условие безобразно оформлено, пришлось как-то догадываться, что имелось ввиду, так что, если я решил не те примеры, что вы ждали - ваша вина, надо понятно оформлять.
Это устные упражнения на тему (a^3 + b^3)/(a^2 - a*b + b^2) = (a + b); (ну, конечно, и сумма и разность кубов сюда укладываются, для отрицательных чисел целые степени определены.)
в случае А) a = 1/2000 b = - 1/1999 (ну, в смысле число в минус первой степени);
ответ 1/2000 - 1/1999 = - 1/(1999*2000) = - 1/3998000;
Б) a = 1/1222 b = 1/777,
ответ 1/1222 + 1/777 = 1999/949494; может это и можно сократить, но ...
-x²(x-5)+10(x-5)=0
(x-5)(10-x²)=0
х-5=0 или 10-х²=0
х=5 х²=10
х=√10 ; х=-√10
ответ: -√10;√10 ;5