Данный тип уравнения решается с деления на cos²x: 2tg²x-9tgx+7=0 Замена : tgx=t 2t²-9t+7=0 Д=81-4*2*7=81-56=25=5² t1/2=(9+-5)/4 t1=(9+5)/4=14/4=7/2 t2=(9-5)/4=4/4=1 Вернемся к замене: tgx=7/2 x=arctg7/2+Пn tgx=1 x=П/4+Пn
как решить графически систему уравнения 3x+y=3 2x-y=7
рисуешь графики 3x+y=3
2x-y=7, это прямые, 1) 3x+y=3 - прямая проходит через точки с координатами А(0,3) x=0 y=3 и В(1,0) x=1 y=0 , отмечаем эти точки и рисуем прямую.
2) 2x-y=7- прямая проходит через точки с координатами С(0,3) x=0 y=-7 и D(1,0) x=1 y= -5 , отмечаем эти точки и рисуем прямую. Смотрим и видим точка пересечения К(2,-3)
Это уравнение с одним неизвестным с, только, как мне кажется, оно записано с ошибкой, здесь надо выражение 3с - 1 взять в скобки, потому что иначе получается, что на 14 надо делить (-1), а не (3с - 1): Общий знаменатель в данном случае - 14. Поэтому первую дробь домножаем на 2 и "двойку" во второй части уравнения домножаем на 14. Получаем после этого уравнение: 2с - (3с - 1) = 2 * 14 Открываем скобки: 2с - 3с + 1 = 28 -с = 27 с = -27 Всегда стоит проверять, правильно ли решено, т.е. подставить полученное решение с = -27 в данное уравнение. Если обе части уравнения окажутся равны, то решение правильное.
2tg²x-9tgx+7=0
Замена : tgx=t
2t²-9t+7=0
Д=81-4*2*7=81-56=25=5²
t1/2=(9+-5)/4
t1=(9+5)/4=14/4=7/2
t2=(9-5)/4=4/4=1
Вернемся к замене:
tgx=7/2
x=arctg7/2+Пn
tgx=1
x=П/4+Пn