4) √61
Объяснение:
Чтобы определить который из заданных чисел принадлежит промежутку [7; 8] необходимо сравнивать числа с границей промежутка. Но заданные числа иррациональные и поэтому будем сравнивать квадраты чисел с квадратом границ промежутка:
7²=49, 8²=64.
1) (√7)² = 7 и 7<49<64, что означает: √7 не принадлежит промежутку [7;8];
2) (√8)² = 8 и 8<49<64, что означает: √8 не принадлежит промежутку [7;8];
3) (√42)² = 42 и 42<49<64, что означает: √42 не принадлежит промежутку [7;8];
4) (√61)² = 61 и 49≤61≤64, что означает: √61 принадлежит промежутку [7;8].
4) √61
Объяснение:
Чтобы определить который из заданных чисел принадлежит промежутку [7; 8] необходимо сравнивать числа с границей промежутка. Но заданные числа иррациональные и поэтому будем сравнивать квадраты чисел с квадратом границ промежутка:
7²=49, 8²=64.
1) (√7)² = 7 и 7<49<64, что означает: √7 не принадлежит промежутку [7;8];
2) (√8)² = 8 и 8<49<64, что означает: √8 не принадлежит промежутку [7;8];
3) (√42)² = 42 и 42<49<64, что означает: √42 не принадлежит промежутку [7;8];
4) (√61)² = 61 и 49≤61≤64, что означает: √61 принадлежит промежутку [7;8].
0*1=0
1*2=2
2*3=6
3*4=2
4*5=0
5*6=0
6*7=2
7*8=6
8*9=2
9*0=0
Все оканчивается на четные
НЕТ 2-х рядом стоящих натуральных чисел при перемножении которых в концк 111