М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sen4enkostas
sen4enkostas
06.03.2022 03:14 •  Алгебра

Впервом ящике в 2 раза больше гвоздей, чем во втором. после того как из первого ящика взяли 5 кг гвоздей, а из второго - 10 кг, в первом ящике стало в 3 раза больше гвоздей, чем во втором. сколько килограммов гвоздей было в двух ящиках вместе первоначально?

👇
Ответ:
Anutka87igorevna
Anutka87igorevna
06.03.2022

Пусть во втором ящике x гвоздей, тогда в первом ящике 2x гвоздей. После того, как взяли 5кг из первого, там осталось 2x-5. А после того, как взяли 10кг из второго, там осталось x-10

По условию 2x-5=3*(x-10)

Решаем уравнение:

2x-5=3x-30

3x-2x=30-5

x=25

Значит, во втором ящике первоначально было 25кг гвоздей, а во втором - 50кг гвоздей. Всего в этих ящиках было 50+25=75кг гвоздей

ответ: в двух ящиках первоначально было 75кг гвоздей.

4,5(47 оценок)
Открыть все ответы
Ответ:
ressoli442
ressoli442
06.03.2022
log_4125=a
Представим основание и показатель логарифма в степенях: log_4125=log_{2^2}5^3.
Недолго вспоминаем свойства логарифмов, и перед тобою сейчас 3 из них: 
log_{a^p}x=\frac{1}{p}log_ax;\\log_ax^p=p*log_ax;\\log_xy=\frac{1}{log_yx}

log_{2^2}5^3=\frac{1}{2}log_25^3=\frac{1}{2}*3*log_25=\frac{3}{2}*log_25
Ещё не забыл, что всё это выражение равно α? Так вот и пишем: 
\frac{3}{2}*log_25=a, тогда, следовательно, 
log_25=a:\frac{3}{2}=a*\frac{2}{3}=\frac{2a}{3}

Разбираемся со вторым логарифмом, но для начала вспомним о том, что такое десятичный логарифм: lgx=log_{10}x. На примере, думаю, всё наглядно понятно. Едем. lg64=log_{10}64. Шестьдесят четыре – это два в шестой степени, посему имеем право записать: 
log_{10}64=log_{10}2^6. Но и не забываем про свойства, описанные немного ранее: 
log_{10}2^6=6log_{10}2.

Надеюсь, ты ещё помнишь третье свойство, которое я написал в самом начале? Тогда поехали: 
6log_{10}2=\frac{6}{log_210}=\frac{6}{log_2(2*5)}=\frac{6}{log_22+log_25}=\frac{6}{1+log_25}
log_25... кажется, где-то он есть в решении, да причём и равен \frac{2a}{3}! Подставляем в слагаемое, находящееся в знаменателе дроби, сокращаем, перемножаем, складываем – считаем, короче. 

\frac{6}{1+log_25}=\frac{6}{1+\frac{2a}{3}}=\frac{6}{\frac{3}{3}+\frac{2a}{3}}=\frac{6}{\frac{3+2a}{3}}=6*\frac{3}{3+2a}=\frac{18}{3+2a}

ответ: lg64=\frac{18}{3+2a}, если log_4125=a
4,8(88 оценок)
Ответ:
saskey
saskey
06.03.2022
Здесь опять есть нюанс, связанный с тем, что же все-таки мы считаем числителем и знаменателем новой дроби. Если мы новой дробью считаем дробь с числителем 2а+b и знаменателем a(a+b), то такая дробь несократима.

Предположим, противоположное, что 1/a+1/(a+b)=(2а+b)/(a(a+b)) сократима, т.е. 2а+b и a(a+b) делятся на некоторое простое число q.  Т.к. q - простое и произведение а(a+b) на него делится, то либо а, либо a+b делится на q.
1) Пусть a делится на q. В силу равенства b=(2a+b)-2a, получаем, что b тоже делится на q, а значит дробь a/b - сократима. Противоречие.
2) Если а+b делится на q, то в силу равенств
а=(2a+b)-(a+b) и b=2(a+b)-(2a+b), получаем, что а и b тоже делятся на q и дробь а/b сократима. Противоречие. Таким образом, дробь (2а+b)/(a(a+b)) несократима.
4,4(12 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ