Объяснение:
Составьте квадрат суммы двух одночленов.ответ запишите в виде степени и в виде многочлена.(2x + 5)² = 4x² + 20x + 25
(x + 3)² = x² + 6x + 9
(6a + 7b)² = 36a² + 84ab + 49b²
(2k + 3)² = 4k² + 12k + 9
Пользуясь формулой квадрата суммы,вычислите значение выражения:10,2² = (10+0,2)² = 100 + 4 + 0,04 = 104,04
104²=(100+4)² = 10000 + 800 + 16 = 10816
32² = (30 + 2)² = 900 + 120 + 4 = 1024
51² = (50 + 1)² = 2500 + 100 + 1 = 2601
ПРИМЕЧАНИЕ:все числа во второй степени.
Представьте многочлен в виде квадрата суммы:4a²+4ab+b² = (2a + b)²
k²+2kb+b² = (k + b)²
1+2m+m² = (1 + m)²
1/4+p+p² = (1/2 + p)²
ПРИМЕЧАНИЕ:4a,b k,b m p во второй степени
а1·х+b1·y=c1
a2·x+b2y=c2
1) имеют бесконечное количество решений когда: a1/a2=b1/b2=c1/c2
2) не имеют решений когда: a1/a2=b1/b2≠c1/c2
3) имеют одно решение когда: a1/a2≠b1/b2
Итак, запишем наши уравнения в стандартном виде:
ах-у=0,
2х-у=-5
а) чтобы система не имела решений должно выполняться: a/2=(-1)/(-1)≠0/5, что выполняется при а=2
б) a/2≠(-1)/(-1) выполняется при всех а, кроме а=2
Успехов в учебе!
Математика- самая красивая, гармоничная, правильная и справедливая модель нашего мира и нас в нем.©.