Пусть моркови было х кг.
Тогда картофеля было 2,5х кг, а лука 2,5х+14 кг.
Всего овощей на базе было х+2,5х+2,5х+14 кг, что по условию задачи равно 590 кг.
х+2,5х+2,5х+14=590
6х=590-14
х= 576:6
х=96 (кг)- морковь
2,5*96=240 (кг) - картофель
2,5*96+14 =254 (кг) лук
А вторая задача правильно задана, в смысле все условия вышеперечислены?
Пусть скорость катера х км/ч, тогда по расстояние из А в В было 8*(х+2) км - 8 это время, 2 это скорость течения реки, ну а формулу расстояния знают все :время *на скорость
А расстояние Из В в А составляет 9*(х-2) - минус Т.К. против течения. Так как расстояния туда и обратно равны составляем уравнение
9*(х-2) = 8*(х+2)
9х-18 =8х+16
9х-8х=18+16
1х=34 Км/ч - скорость катера
1) Найдём производную: y' = 3x² + 18x + 15; Решим уравнение: 3x² + 18x + 15 = 0, x + 6x + 5 = 0, по теореме Виета: x₁ + x₂ = - 6, x₁ · x₂ = 5 ⇒
x₁ = - 1; x₂ =- 5 ⇒ на промежутке ( - ∞, - 5) функция возрастает;
на ( -5, - 1) убывает и на ( - 1, + ∞) возрастает, таким образом ( -5) - точка максимума, (-1) - точка минимума.
Вычислим: y (- 5) = (-5)³ + 9 · (-5)² + 15 · (-5) - 25 = 0; y (-1) = (-1)³ + 9 · (-1)² + 15 · (-1) - 25 = - 32
Итак: Строим график - От ( +∞) до точки ( - 5; 0) функция возрастает; От точки ( -5; 0) до точки (- 1; - 32) функция убывает и от точки ( -1; - 32)
до (-∞) возрастает.
Точки перегиба: ( -5; 0) и (- 1; - 32)
1.5х-в первом
(х+8)-стало во втором
1.5х-8 стало в первом
33-8=25(р)-станет в первом цехе
22+8=30(р.)-стало во втором цехе
ответ:в первом цехе стало 25 рабочих,а во втором-30 рабочих.