Для решения неравенства методом интервалов будем выполнять следующие шаги
1) найдем корни уравнения уравнения
(x+3)(x-4)(x-6)=0
произведение равно нуля когда любой из множителей равен нулю
х+3=0 или х-4=0 или х-6=0
тогда х= -3 или х= 4 или х=6
2) Нарисуем числовую ось и отметив полученные точки
-3 4 6
3) в каждом из полученных промежутков определим знак нашего выражения
при х< -3 проверим для точки х= -5
(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0
при -3<x<4 проверим для точки х=0
(0+3)(0-4)(0-6)=(+)(-)(-)>0
при 4<x<6 проверим для точки х=5
(5+3)(5-4)(5-6)=(+)(+)(-)<0
при x>6 проверим для точки х=10
(10+3)(10-4)(10-6)= (+)(+)(+)>0
4) расставим полученные знаки над промежутками
--3+4-6__+
5) и теперь осталось выбрать промежутки где стоит знак "минус"
( по условию <0)
Запишем полученные промежутки (-∞; -3) ∪(4;6)
находим фокусное расстояние (f)
d=1/f 4=1/f
f=1/4 м= 0.25м
г-увеличение
г= f/d= 3/1=3
d=1м расстояние от предмета до линзы
f - расстояние от линзы до изображения
1/f=1/d+1/f
1/f= 1/f-1/d= 1/0.25 - 1= 1/3
f=3 м
ответ f= 0.25 м
г= 3
f= 3 м
5 * ( 2X + 7 ) = 3 * ( 5X + 4 )
10X + 35 = 15X + 12
15X - 10X = 35 - 12
5X = 23
X = 4,6